/*! * Copyright 2020 XGBoost contributors */ #include #include "../helpers.h" #include "../../../src/data/iterative_device_dmatrix.h" #include "../../../src/data/ellpack_page.cuh" #include "../../../src/data/device_adapter.cuh" namespace xgboost { namespace data { void TestEquivalent(float sparsity) { CudaArrayIterForTest iter{sparsity}; IterativeDeviceDMatrix m( &iter, iter.Proxy(), Reset, Next, std::numeric_limits::quiet_NaN(), 0, 256); size_t offset = 0; auto first = (*m.GetEllpackBatches({}).begin()).Impl(); std::unique_ptr page_concatenated { new EllpackPageImpl(0, first->Cuts(), first->is_dense, first->row_stride, 1000 * 100)}; for (auto& batch : m.GetBatches({})) { auto page = batch.Impl(); size_t num_elements = page_concatenated->Copy(0, page, offset); offset += num_elements; } auto from_iter = page_concatenated->GetDeviceAccessor(0); ASSERT_EQ(m.Info().num_col_, CudaArrayIterForTest::kCols); ASSERT_EQ(m.Info().num_row_, CudaArrayIterForTest::kRows); std::string interface_str = iter.AsArray(); auto adapter = CupyAdapter(interface_str); std::unique_ptr dm{ DMatrix::Create(&adapter, std::numeric_limits::quiet_NaN(), 0)}; BatchParam bp {0, 256}; for (auto& ellpack : dm->GetBatches(bp)) { auto from_data = ellpack.Impl()->GetDeviceAccessor(0); std::vector cuts_from_iter(from_iter.gidx_fvalue_map.size()); std::vector min_fvalues_iter(from_iter.min_fvalue.size()); std::vector cut_ptrs_iter(from_iter.feature_segments.size()); dh::CopyDeviceSpanToVector(&cuts_from_iter, from_iter.gidx_fvalue_map); dh::CopyDeviceSpanToVector(&min_fvalues_iter, from_iter.min_fvalue); dh::CopyDeviceSpanToVector(&cut_ptrs_iter, from_iter.feature_segments); std::vector cuts_from_data(from_data.gidx_fvalue_map.size()); std::vector min_fvalues_data(from_data.min_fvalue.size()); std::vector cut_ptrs_data(from_data.feature_segments.size()); dh::CopyDeviceSpanToVector(&cuts_from_data, from_data.gidx_fvalue_map); dh::CopyDeviceSpanToVector(&min_fvalues_data, from_data.min_fvalue); dh::CopyDeviceSpanToVector(&cut_ptrs_data, from_data.feature_segments); ASSERT_EQ(cuts_from_iter.size(), cuts_from_data.size()); for (size_t i = 0; i < cuts_from_iter.size(); ++i) { EXPECT_NEAR(cuts_from_iter[i], cuts_from_data[i], kRtEps); } ASSERT_EQ(min_fvalues_iter.size(), min_fvalues_data.size()); for (size_t i = 0; i < min_fvalues_iter.size(); ++i) { ASSERT_NEAR(min_fvalues_iter[i], min_fvalues_data[i], kRtEps); } ASSERT_EQ(cut_ptrs_iter.size(), cut_ptrs_data.size()); for (size_t i = 0; i < cut_ptrs_iter.size(); ++i) { ASSERT_EQ(cut_ptrs_iter[i], cut_ptrs_data[i]); } auto const& buffer_from_iter = page_concatenated->gidx_buffer; auto const& buffer_from_data = ellpack.Impl()->gidx_buffer; ASSERT_NE(buffer_from_data.Size(), 0); common::CompressedIterator data_buf{ buffer_from_data.ConstHostPointer(), from_data.NumSymbols()}; common::CompressedIterator data_iter{ buffer_from_iter.ConstHostPointer(), from_iter.NumSymbols()}; CHECK_EQ(from_data.NumSymbols(), from_iter.NumSymbols()); CHECK_EQ(from_data.n_rows * from_data.row_stride, from_data.n_rows * from_iter.row_stride); for (size_t i = 0; i < from_data.n_rows * from_data.row_stride; ++i) { CHECK_EQ(data_buf[i], data_iter[i]); } } } TEST(IterativeDeviceDMatrix, Basic) { TestEquivalent(0.0); TestEquivalent(0.5); } TEST(IterativeDeviceDMatrix, RowMajor) { CudaArrayIterForTest iter(0.0f); IterativeDeviceDMatrix m( &iter, iter.Proxy(), Reset, Next, std::numeric_limits::quiet_NaN(), 0, 256); size_t n_batches = 0; std::string interface_str = iter.AsArray(); for (auto& ellpack : m.GetBatches({})) { n_batches ++; auto impl = ellpack.Impl(); common::CompressedIterator iterator( impl->gidx_buffer.HostVector().data(), impl->NumSymbols()); auto cols = CudaArrayIterForTest::kCols; auto rows = CudaArrayIterForTest::kRows; auto j_interface = Json::Load({interface_str.c_str(), interface_str.size()}); ArrayInterface<2> loaded {get(j_interface)}; std::vector h_data(cols * rows); common::Span s_data{static_cast(loaded.data), cols * rows}; dh::CopyDeviceSpanToVector(&h_data, s_data); for(auto i = 0ull; i < rows * cols; i++) { int column_idx = i % cols; EXPECT_EQ(impl->Cuts().SearchBin(h_data[i], column_idx), iterator[i]); } EXPECT_EQ(m.Info().num_col_, cols); EXPECT_EQ(m.Info().num_row_, rows); EXPECT_EQ(m.Info().num_nonzero_, rows * cols); } // All batches are concatenated. ASSERT_EQ(n_batches, 1); } TEST(IterativeDeviceDMatrix, RowMajorMissing) { const float kMissing = std::numeric_limits::quiet_NaN(); size_t rows = 10; size_t cols = 2; CudaArrayIterForTest iter(0.0f, rows, cols, 2); std::string interface_str = iter.AsArray(); auto j_interface = Json::Load({interface_str.c_str(), interface_str.size()}); ArrayInterface<2> loaded {get(j_interface)}; std::vector h_data(cols * rows); common::Span s_data{static_cast(loaded.data), cols * rows}; dh::CopyDeviceSpanToVector(&h_data, s_data); h_data[1] = kMissing; h_data[5] = kMissing; h_data[6] = kMissing; auto ptr = thrust::device_ptr( reinterpret_cast(get(j_interface["data"][0]))); thrust::copy(h_data.cbegin(), h_data.cend(), ptr); IterativeDeviceDMatrix m( &iter, iter.Proxy(), Reset, Next, std::numeric_limits::quiet_NaN(), 0, 256); auto &ellpack = *m.GetBatches({0, 256}).begin(); auto impl = ellpack.Impl(); common::CompressedIterator iterator( impl->gidx_buffer.HostVector().data(), impl->NumSymbols()); EXPECT_EQ(iterator[1], impl->GetDeviceAccessor(0).NullValue()); EXPECT_EQ(iterator[5], impl->GetDeviceAccessor(0).NullValue()); // null values get placed after valid values in a row EXPECT_EQ(iterator[7], impl->GetDeviceAccessor(0).NullValue()); EXPECT_EQ(m.Info().num_col_, cols); EXPECT_EQ(m.Info().num_row_, rows); EXPECT_EQ(m.Info().num_nonzero_, rows* cols - 3); } TEST(IterativeDeviceDMatrix, IsDense) { int num_bins = 16; auto test = [num_bins] (float sparsity) { CudaArrayIterForTest iter(sparsity); IterativeDeviceDMatrix m( &iter, iter.Proxy(), Reset, Next, std::numeric_limits::quiet_NaN(), 0, 256); if (sparsity == 0.0) { ASSERT_TRUE(m.IsDense()); } else { ASSERT_FALSE(m.IsDense()); } }; test(0.0); test(0.1); } } // namespace data } // namespace xgboost