/*! * Copyright 2016-2022 by XGBoost contributors */ #include #include #include #include #include #include #include #include #include #include #include #include "helpers.h" #include "xgboost/c_api.h" #include "../../src/data/adapter.h" #include "../../src/data/simple_dmatrix.h" #include "../../src/data/sparse_page_dmatrix.h" #include "../../src/gbm/gbtree_model.h" #include "xgboost/predictor.h" #if defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1 #include #include #include #include "rmm/mr/device/per_device_resource.hpp" #include "rmm/mr/device/cuda_memory_resource.hpp" #include "rmm/mr/device/pool_memory_resource.hpp" #endif // defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1 bool FileExists(const std::string& filename) { struct stat st; return stat(filename.c_str(), &st) == 0; } int64_t GetFileSize(const std::string& filename) { struct stat st; stat(filename.c_str(), &st); return st.st_size; } void CreateSimpleTestData(const std::string& filename) { CreateBigTestData(filename, 6); } void CreateBigTestData(const std::string& filename, size_t n_entries, bool zero_based) { std::ofstream fo(filename.c_str()); const size_t entries_per_row = 3; std::string odd_row; if (zero_based) { odd_row = " 0:0 3:30 4:40\n"; } else { odd_row = " 1:0 4:30 5:40\n"; } std::string even_row; if (zero_based) { even_row = " 0:0 1:10 2:20\n"; } else { even_row = " 1:0 2:10 3:20\n"; } size_t n_rows = (n_entries + entries_per_row - 1) / entries_per_row; for (size_t i = 0; i < n_rows; ++i) { auto row = i % 2 == 0 ? even_row : odd_row; fo << i << row; } } void CheckObjFunctionImpl(std::unique_ptr const& obj, std::vector preds, std::vector labels, std::vector weights, xgboost::MetaInfo const& info, std::vector out_grad, std::vector out_hess) { xgboost::HostDeviceVector in_preds(preds); xgboost::HostDeviceVector out_gpair; obj->GetGradient(in_preds, info, 1, &out_gpair); std::vector& gpair = out_gpair.HostVector(); ASSERT_EQ(gpair.size(), in_preds.Size()); for (int i = 0; i < static_cast(gpair.size()); ++i) { EXPECT_NEAR(gpair[i].GetGrad(), out_grad[i], 0.01) << "Unexpected grad for pred=" << preds[i] << " label=" << labels[i] << " weight=" << weights[i]; EXPECT_NEAR(gpair[i].GetHess(), out_hess[i], 0.01) << "Unexpected hess for pred=" << preds[i] << " label=" << labels[i] << " weight=" << weights[i]; } } void CheckObjFunction(std::unique_ptr const& obj, std::vector preds, std::vector labels, std::vector weights, std::vector out_grad, std::vector out_hess) { xgboost::MetaInfo info; info.num_row_ = labels.size(); info.labels = xgboost::linalg::Tensor{labels.cbegin(), labels.cend(), {labels.size()}, -1}; info.weights_.HostVector() = weights; CheckObjFunctionImpl(obj, preds, labels, weights, info, out_grad, out_hess); } xgboost::Json CheckConfigReloadImpl(xgboost::Configurable* const configurable, std::string name) { xgboost::Json config_0 { xgboost::Object() }; configurable->SaveConfig(&config_0); configurable->LoadConfig(config_0); xgboost::Json config_1 { xgboost::Object() }; configurable->SaveConfig(&config_1); std::string str_0, str_1; xgboost::Json::Dump(config_0, &str_0); xgboost::Json::Dump(config_1, &str_1); EXPECT_EQ(str_0, str_1); if (name != "") { EXPECT_EQ(xgboost::get(config_1["name"]), name); } return config_1; } void CheckRankingObjFunction(std::unique_ptr const& obj, std::vector preds, std::vector labels, std::vector weights, std::vector groups, std::vector out_grad, std::vector out_hess) { xgboost::MetaInfo info; info.num_row_ = labels.size(); info.labels = xgboost::linalg::Tensor{ labels.cbegin(), labels.cend(), {labels.size(), static_cast(1)}, -1}; info.weights_.HostVector() = weights; info.group_ptr_ = groups; CheckObjFunctionImpl(obj, preds, labels, weights, info, out_grad, out_hess); } xgboost::bst_float GetMetricEval(xgboost::Metric* metric, xgboost::HostDeviceVector const& preds, std::vector labels, std::vector weights, std::vector groups) { return GetMultiMetricEval( metric, preds, xgboost::linalg::Tensor{labels.begin(), labels.end(), {labels.size()}, -1}, weights, groups); } double GetMultiMetricEval(xgboost::Metric* metric, xgboost::HostDeviceVector const& preds, xgboost::linalg::Tensor const& labels, std::vector weights, std::vector groups) { xgboost::MetaInfo info; info.num_row_ = labels.Shape(0); info.labels.Reshape(labels.Shape()[0], labels.Shape()[1]); info.labels.Data()->Copy(*labels.Data()); info.weights_.HostVector() = weights; info.group_ptr_ = groups; return metric->Eval(preds, info, false); } namespace xgboost { bool IsNear(std::vector::const_iterator _beg1, std::vector::const_iterator _end1, std::vector::const_iterator _beg2) { for (auto iter1 = _beg1, iter2 = _beg2; iter1 != _end1; ++iter1, ++iter2) { if (std::abs(*iter1 - *iter2) > xgboost::kRtEps){ return false; } } return true; } SimpleLCG::StateType SimpleLCG::operator()() { state_ = (alpha_ * state_ + (state_ == 0 ? kDefaultInit : 0)) % mod_; return state_; } SimpleLCG::StateType SimpleLCG::Min() const { return min(); } SimpleLCG::StateType SimpleLCG::Max() const { return max(); } // Make sure it's compile time constant. static_assert(SimpleLCG::max() - SimpleLCG::min(), ""); void RandomDataGenerator::GenerateDense(HostDeviceVector *out) const { xgboost::SimpleRealUniformDistribution dist(lower_, upper_); CHECK(out); SimpleLCG lcg{lcg_}; out->Resize(rows_ * cols_, 0); auto &h_data = out->HostVector(); float sparsity = sparsity_ * (upper_ - lower_) + lower_; for (auto &v : h_data) { auto g = dist(&lcg); if (g < sparsity) { v = std::numeric_limits::quiet_NaN(); } else { v = dist(&lcg); } } if (device_ >= 0) { out->SetDevice(device_); out->DeviceSpan(); } } Json RandomDataGenerator::ArrayInterfaceImpl(HostDeviceVector *storage, size_t rows, size_t cols) const { this->GenerateDense(storage); return GetArrayInterface(storage, rows, cols); } std::string RandomDataGenerator::GenerateArrayInterface( HostDeviceVector *storage) const { auto array_interface = this->ArrayInterfaceImpl(storage, rows_, cols_); std::string out; Json::Dump(array_interface, &out); return out; } std::pair, std::string> RandomDataGenerator::GenerateArrayInterfaceBatch( HostDeviceVector *storage, size_t batches) const { this->GenerateDense(storage); std::vector result(batches); std::vector objects; size_t const rows_per_batch = rows_ / batches; auto make_interface = [storage, this](size_t offset, size_t rows) { Json array_interface{Object()}; array_interface["data"] = std::vector(2); if (device_ >= 0) { array_interface["data"][0] = Integer(reinterpret_cast(storage->DevicePointer() + offset)); array_interface["stream"] = Null{}; } else { array_interface["data"][0] = Integer(reinterpret_cast(storage->HostPointer() + offset)); } array_interface["data"][1] = Boolean(false); array_interface["shape"] = std::vector(2); array_interface["shape"][0] = rows; array_interface["shape"][1] = cols_; array_interface["typestr"] = String("> *data) const { CHECK(data); CHECK_EQ(data->size(), cols_); auto& storage = *data; Json arr { Array() }; for (size_t i = 0; i < cols_; ++i) { auto column = this->ArrayInterfaceImpl(&storage[i], rows_, 1); get(arr).emplace_back(column); } std::string out; Json::Dump(arr, &out); return out; } void RandomDataGenerator::GenerateCSR( HostDeviceVector* value, HostDeviceVector* row_ptr, HostDeviceVector* columns) const { auto& h_value = value->HostVector(); auto& h_rptr = row_ptr->HostVector(); auto& h_cols = columns->HostVector(); SimpleLCG lcg{lcg_}; xgboost::SimpleRealUniformDistribution dist(lower_, upper_); float sparsity = sparsity_ * (upper_ - lower_) + lower_; SimpleRealUniformDistribution cat(0.0, max_cat_); h_rptr.emplace_back(0); for (size_t i = 0; i < rows_; ++i) { size_t rptr = h_rptr.back(); for (size_t j = 0; j < cols_; ++j) { auto g = dist(&lcg); if (g >= sparsity) { if (common::IsCat(ft_, j)) { g = common::AsCat(cat(&lcg)); } else { g = dist(&lcg); } h_value.emplace_back(g); rptr++; h_cols.emplace_back(j); } } h_rptr.emplace_back(rptr); } if (device_ >= 0) { value->SetDevice(device_); value->DeviceSpan(); row_ptr->SetDevice(device_); row_ptr->DeviceSpan(); columns->SetDevice(device_); columns->DeviceSpan(); } CHECK_LE(h_value.size(), rows_ * cols_); CHECK_EQ(value->Size(), h_rptr.back()); CHECK_EQ(columns->Size(), value->Size()); } std::shared_ptr RandomDataGenerator::GenerateDMatrix(bool with_label, bool float_label, size_t classes) const { HostDeviceVector data; HostDeviceVector rptrs; HostDeviceVector columns; this->GenerateCSR(&data, &rptrs, &columns); data::CSRAdapter adapter(rptrs.HostPointer(), columns.HostPointer(), data.HostPointer(), rows_, data.Size(), cols_); std::shared_ptr out{ DMatrix::Create(&adapter, std::numeric_limits::quiet_NaN(), 1)}; if (with_label) { RandomDataGenerator gen(rows_, 1, 0); if (!float_label) { gen.Lower(0).Upper(classes).GenerateDense(out->Info().labels.Data()); out->Info().labels.Reshape(this->rows_); auto& h_labels = out->Info().labels.Data()->HostVector(); for (auto& v : h_labels) { v = static_cast(static_cast(v)); } } else { gen.GenerateDense(out->Info().labels.Data()); out->Info().labels.Reshape(this->rows_); } } if (device_ >= 0) { out->Info().labels.SetDevice(device_); out->Info().feature_types.SetDevice(device_); for (auto const& page : out->GetBatches()) { page.data.SetDevice(device_); page.offset.SetDevice(device_); } } if (!ft_.empty()) { out->Info().feature_types.HostVector() = ft_; } return out; } std::shared_ptr GetDMatrixFromData(const std::vector &x, int num_rows, int num_columns){ data::DenseAdapter adapter(x.data(), num_rows, num_columns); return std::shared_ptr(new data::SimpleDMatrix( &adapter, std::numeric_limits::quiet_NaN(), 1)); } std::unique_ptr CreateSparsePageDMatrix(bst_row_t n_samples, bst_feature_t n_features, size_t n_batches, std::string prefix) { CHECK_GE(n_samples, n_batches); ArrayIterForTest iter(0, n_samples, n_features, n_batches); std::unique_ptr dmat{ DMatrix::Create(static_cast(&iter), iter.Proxy(), Reset, Next, std::numeric_limits::quiet_NaN(), omp_get_max_threads(), prefix)}; auto row_page_path = data::MakeId(prefix, dynamic_cast(dmat.get())) + ".row.page"; EXPECT_TRUE(FileExists(row_page_path)) << row_page_path; // Loop over the batches and count the number of pages int64_t batch_count = 0; int64_t row_count = 0; for (const auto& batch : dmat->GetBatches()) { batch_count++; row_count += batch.Size(); } EXPECT_GE(batch_count, n_batches); EXPECT_EQ(row_count, dmat->Info().num_row_); return dmat; } std::unique_ptr CreateSparsePageDMatrix(size_t n_entries, std::string prefix) { size_t n_columns = 3; size_t n_rows = n_entries / n_columns; ArrayIterForTest iter(0, n_rows, n_columns, 2); std::unique_ptr dmat{DMatrix::Create( static_cast(&iter), iter.Proxy(), Reset, Next, std::numeric_limits::quiet_NaN(), omp_get_max_threads(), prefix)}; auto row_page_path = data::MakeId(prefix, dynamic_cast(dmat.get())) + ".row.page"; EXPECT_TRUE(FileExists(row_page_path)) << row_page_path; // Loop over the batches and count the records int64_t batch_count = 0; int64_t row_count = 0; for (const auto &batch : dmat->GetBatches()) { batch_count++; row_count += batch.Size(); } EXPECT_GE(batch_count, 2); EXPECT_EQ(row_count, dmat->Info().num_row_); return dmat; } std::unique_ptr CreateSparsePageDMatrixWithRC( size_t n_rows, size_t n_cols, size_t page_size, bool deterministic, const dmlc::TemporaryDirectory& tempdir) { if (!n_rows || !n_cols) { return nullptr; } // Create the svm file in a temp dir const std::string tmp_file = tempdir.path + "/big.libsvm"; std::ofstream fo(tmp_file.c_str()); size_t cols_per_row = ((std::max(n_rows, n_cols) - 1) / std::min(n_rows, n_cols)) + 1; int64_t rem_cols = n_cols; size_t col_idx = 0; // Random feature id generator std::random_device rdev; std::unique_ptr gen; if (deterministic) { // Seed it with a constant value for this configuration - without getting too fancy // like ordered pairing functions and its likes to make it truely unique gen.reset(new std::mt19937(n_rows * n_cols)); } else { gen.reset(new std::mt19937(rdev())); } std::uniform_int_distribution label(0, 1); std::uniform_int_distribution dis(1, n_cols); for (size_t i = 0; i < n_rows; ++i) { // Make sure that all cols are slotted in the first few rows; randomly distribute the // rest std::stringstream row_data; size_t j = 0; if (rem_cols > 0) { for (; j < std::min(static_cast(rem_cols), cols_per_row); ++j) { row_data << label(*gen) << " " << (col_idx + j) << ":" << (col_idx + j + 1) * 10 * i; } rem_cols -= cols_per_row; } else { // Take some random number of colums in [1, n_cols] and slot them here std::vector random_columns; size_t ncols = dis(*gen); for (; j < ncols; ++j) { size_t fid = (col_idx + j) % n_cols; random_columns.push_back(fid); } std::sort(random_columns.begin(), random_columns.end()); for (auto fid : random_columns) { row_data << label(*gen) << " " << fid << ":" << (fid + 1) * 10 * i; } } col_idx += j; fo << row_data.str() << "\n"; } fo.close(); std::string uri = tmp_file; if (page_size > 0) { uri += "#" + tmp_file + ".cache"; } std::unique_ptr dmat( DMatrix::Load(uri, true, false, "auto")); return dmat; } gbm::GBTreeModel CreateTestModel(LearnerModelParam const* param, GenericParameter const* ctx, size_t n_classes) { gbm::GBTreeModel model(param, ctx); for (size_t i = 0; i < n_classes; ++i) { std::vector> trees; trees.push_back(std::unique_ptr(new RegTree)); if (i == 0) { (*trees.back())[0].SetLeaf(1.5f); (*trees.back()).Stat(0).sum_hess = 1.0f; } model.CommitModel(std::move(trees), i); } return model; } std::unique_ptr CreateTrainedGBM( std::string name, Args kwargs, size_t kRows, size_t kCols, LearnerModelParam const* learner_model_param, GenericParameter const* generic_param) { auto caches = std::make_shared< PredictionContainer >();; std::unique_ptr gbm { GradientBooster::Create(name, generic_param, learner_model_param)}; gbm->Configure(kwargs); auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix(); std::vector labels(kRows); for (size_t i = 0; i < kRows; ++i) { labels[i] = i; } p_dmat->Info().labels = linalg::Tensor{labels.cbegin(), labels.cend(), {labels.size()}, -1}; HostDeviceVector gpair; auto& h_gpair = gpair.HostVector(); h_gpair.resize(kRows); for (size_t i = 0; i < kRows; ++i) { h_gpair[i] = {static_cast(i), 1}; } PredictionCacheEntry predts; gbm->DoBoost(p_dmat.get(), &gpair, &predts); return gbm; } ArrayIterForTest::ArrayIterForTest(float sparsity, size_t rows, size_t cols, size_t batches) : rows_{rows}, cols_{cols}, n_batches_{batches} { XGProxyDMatrixCreate(&proxy_); rng_.reset(new RandomDataGenerator{rows_, cols_, sparsity}); std::tie(batches_, interface_) = rng_->GenerateArrayInterfaceBatch(&data_, n_batches_); } ArrayIterForTest::~ArrayIterForTest() { XGDMatrixFree(proxy_); } int ArrayIterForTest::Next() { if (iter_ == n_batches_) { return 0; } XGProxyDMatrixSetDataDense(proxy_, batches_[iter_].c_str()); iter_++; return 1; } size_t constexpr ArrayIterForTest::kRows; size_t constexpr ArrayIterForTest::kCols; void DMatrixToCSR(DMatrix *dmat, std::vector *p_data, std::vector *p_row_ptr, std::vector *p_cids) { auto &data = *p_data; auto &row_ptr = *p_row_ptr; auto &cids = *p_cids; data.resize(dmat->Info().num_nonzero_); cids.resize(data.size()); row_ptr.resize(dmat->Info().num_row_ + 1); SparsePage page; for (const auto &batch : dmat->GetBatches()) { page.Push(batch); } auto const& in_offset = page.offset.HostVector(); auto const& in_data = page.data.HostVector(); CHECK_EQ(in_offset.size(), row_ptr.size()); std::copy(in_offset.cbegin(), in_offset.cend(), row_ptr.begin()); ASSERT_EQ(in_data.size(), data.size()); std::transform(in_data.cbegin(), in_data.cend(), data.begin(), [](Entry const& e) { return e.fvalue; }); ASSERT_EQ(in_data.size(), cids.size()); std::transform(in_data.cbegin(), in_data.cend(), cids.begin(), [](Entry const& e) { return e.index; }); } #if defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1 using CUDAMemoryResource = rmm::mr::cuda_memory_resource; using PoolMemoryResource = rmm::mr::pool_memory_resource; class RMMAllocator { public: std::vector> cuda_mr; std::vector> pool_mr; int n_gpu; RMMAllocator() : n_gpu(common::AllVisibleGPUs()) { int current_device; CHECK_EQ(cudaGetDevice(¤t_device), cudaSuccess); for (int i = 0; i < n_gpu; ++i) { CHECK_EQ(cudaSetDevice(i), cudaSuccess); cuda_mr.push_back(std::make_unique()); pool_mr.push_back(std::make_unique(cuda_mr[i].get())); } CHECK_EQ(cudaSetDevice(current_device), cudaSuccess); } ~RMMAllocator() = default; }; void DeleteRMMResource(RMMAllocator* r) { delete r; } RMMAllocatorPtr SetUpRMMResourceForCppTests(int argc, char** argv) { bool use_rmm_pool = false; for (int i = 1; i < argc; ++i) { if (argv[i] == std::string("--use-rmm-pool")) { use_rmm_pool = true; } } if (!use_rmm_pool) { return RMMAllocatorPtr(nullptr, DeleteRMMResource); } LOG(INFO) << "Using RMM memory pool"; auto ptr = RMMAllocatorPtr(new RMMAllocator(), DeleteRMMResource); for (int i = 0; i < ptr->n_gpu; ++i) { rmm::mr::set_per_device_resource(rmm::cuda_device_id(i), ptr->pool_mr[i].get()); } return ptr; } #else // defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1 class RMMAllocator {}; void DeleteRMMResource(RMMAllocator* r) {} RMMAllocatorPtr SetUpRMMResourceForCppTests(int argc, char** argv) { return {nullptr, DeleteRMMResource}; } #endif // !defined(XGBOOST_USE_RMM) || XGBOOST_USE_RMM != 1 } // namespace xgboost