/*! * Copyright 2017-2022 by XGBoost contributors */ #include #include #include #include "helpers.h" #include #include #include #include "xgboost/json.h" #include "../../src/common/io.h" #include "../../src/common/random.h" #include "../../src/common/linalg_op.h" namespace xgboost { TEST(Learner, Basic) { using Arg = std::pair; auto args = {Arg("tree_method", "exact")}; auto mat_ptr = RandomDataGenerator{10, 10, 0.0f}.GenerateDMatrix(); auto learner = std::unique_ptr(Learner::Create({mat_ptr})); learner->SetParams(args); auto major = XGBOOST_VER_MAJOR; auto minor = XGBOOST_VER_MINOR; auto patch = XGBOOST_VER_PATCH; static_assert(std::is_integral::value, "Wrong major version type"); static_assert(std::is_integral::value, "Wrong minor version type"); static_assert(std::is_integral::value, "Wrong patch version type"); } TEST(Learner, ParameterValidation) { ConsoleLogger::Configure({{"verbosity", "2"}}); size_t constexpr kRows = 1; size_t constexpr kCols = 1; auto p_mat = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(); auto learner = std::unique_ptr(Learner::Create({p_mat})); learner->SetParam("validate_parameters", "1"); learner->SetParam("Knock-Knock", "Who's-there?"); learner->SetParam("Silence", "...."); learner->SetParam("tree_method", "exact"); testing::internal::CaptureStderr(); learner->Configure(); std::string output = testing::internal::GetCapturedStderr(); ASSERT_TRUE(output.find(R"(Parameters: { "Knock-Knock", "Silence" })") != std::string::npos); // whitespace learner->SetParam("tree method", "exact"); EXPECT_THROW(learner->Configure(), dmlc::Error); } TEST(Learner, CheckGroup) { using Arg = std::pair; size_t constexpr kNumGroups = 4; size_t constexpr kNumRows = 17; bst_feature_t constexpr kNumCols = 15; std::shared_ptr p_mat{ RandomDataGenerator{kNumRows, kNumCols, 0.0f}.GenerateDMatrix()}; std::vector weight(kNumGroups); std::vector group(kNumGroups); group[0] = 2; group[1] = 3; group[2] = 7; group[3] = 5; std::vector labels (kNumRows); for (size_t i = 0; i < kNumRows; ++i) { labels[i] = i % 2; } p_mat->SetInfo("weight", static_cast(weight.data()), DataType::kFloat32, kNumGroups); p_mat->SetInfo("group", group.data(), DataType::kUInt32, kNumGroups); p_mat->SetInfo("label", labels.data(), DataType::kFloat32, kNumRows); std::vector> mat = {p_mat}; auto learner = std::unique_ptr(Learner::Create(mat)); learner->SetParams({Arg{"objective", "rank:pairwise"}}); EXPECT_NO_THROW(learner->UpdateOneIter(0, p_mat)); group.resize(kNumGroups+1); group[3] = 4; group[4] = 1; p_mat->SetInfo("group", group.data(), DataType::kUInt32, kNumGroups+1); EXPECT_ANY_THROW(learner->UpdateOneIter(0, p_mat)); } TEST(Learner, SLOW_CheckMultiBatch) { // NOLINT // Create sufficiently large data to make two row pages dmlc::TemporaryDirectory tempdir; const std::string tmp_file = tempdir.path + "/big.libsvm"; CreateBigTestData(tmp_file, 50000); std::shared_ptr dmat(xgboost::DMatrix::Load( tmp_file + "#" + tmp_file + ".cache", true, false, "auto")); EXPECT_FALSE(dmat->SingleColBlock()); size_t num_row = dmat->Info().num_row_; std::vector labels(num_row); for (size_t i = 0; i < num_row; ++i) { labels[i] = i % 2; } dmat->SetInfo("label", labels.data(), DataType::kFloat32, num_row); std::vector> mat{dmat}; auto learner = std::unique_ptr(Learner::Create(mat)); learner->SetParams(Args{{"objective", "binary:logistic"}}); learner->UpdateOneIter(0, dmat); } TEST(Learner, Configuration) { std::string const emetric = "eval_metric"; { std::unique_ptr learner { Learner::Create({nullptr}) }; learner->SetParam(emetric, "auc"); learner->SetParam(emetric, "rmsle"); learner->SetParam("foo", "bar"); // eval_metric is not part of configuration auto attr_names = learner->GetConfigurationArguments(); ASSERT_EQ(attr_names.size(), 1ul); ASSERT_EQ(attr_names.find(emetric), attr_names.cend()); ASSERT_EQ(attr_names.at("foo"), "bar"); } { std::unique_ptr learner { Learner::Create({nullptr}) }; learner->SetParams({{"foo", "bar"}, {emetric, "auc"}, {emetric, "entropy"}, {emetric, "KL"}}); auto attr_names = learner->GetConfigurationArguments(); ASSERT_EQ(attr_names.size(), 1ul); ASSERT_EQ(attr_names.at("foo"), "bar"); } } TEST(Learner, JsonModelIO) { // Test of comparing JSON object directly. size_t constexpr kRows = 8; int32_t constexpr kIters = 4; std::shared_ptr p_dmat{RandomDataGenerator{kRows, 10, 0}.GenerateDMatrix()}; p_dmat->Info().labels.Reshape(kRows); CHECK_NE(p_dmat->Info().num_col_, 0); { std::unique_ptr learner { Learner::Create({p_dmat}) }; learner->Configure(); Json out { Object() }; learner->SaveModel(&out); dmlc::TemporaryDirectory tmpdir; std::ofstream fout (tmpdir.path + "/model.json"); fout << out; fout.close(); auto loaded_str = common::LoadSequentialFile(tmpdir.path + "/model.json"); Json loaded = Json::Load(StringView{loaded_str.c_str(), loaded_str.size()}); learner->LoadModel(loaded); learner->Configure(); Json new_in { Object() }; learner->SaveModel(&new_in); ASSERT_EQ(new_in, out); } { std::unique_ptr learner { Learner::Create({p_dmat}) }; for (int32_t iter = 0; iter < kIters; ++iter) { learner->UpdateOneIter(iter, p_dmat); } learner->SetAttr("best_score", "15.2"); Json out { Object() }; learner->SaveModel(&out); learner->LoadModel(out); Json new_in { Object() }; learner->Configure(); learner->SaveModel(&new_in); ASSERT_TRUE(IsA(out["learner"]["attributes"])); ASSERT_EQ(get(out["learner"]["attributes"]).size(), 1ul); ASSERT_EQ(out, new_in); } } // Crashes the test runner if there are race condiditions. // // Build with additional cmake flags to enable thread sanitizer // which definitely catches problems. Note that OpenMP needs to be // disabled, otherwise thread sanitizer will also report false // positives. // // ``` // -DUSE_SANITIZER=ON -DENABLED_SANITIZERS=thread -DUSE_OPENMP=OFF // ``` TEST(Learner, MultiThreadedPredict) { size_t constexpr kRows = 1000; size_t constexpr kCols = 100; std::shared_ptr p_dmat{RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix()}; p_dmat->Info().labels.Reshape(kRows); CHECK_NE(p_dmat->Info().num_col_, 0); std::shared_ptr p_data{ RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix()}; CHECK_NE(p_data->Info().num_col_, 0); std::shared_ptr learner{Learner::Create({p_dmat})}; learner->Configure(); std::vector threads; for (uint32_t thread_id = 0; thread_id < 2 * std::thread::hardware_concurrency(); ++thread_id) { threads.emplace_back([learner, p_data] { size_t constexpr kIters = 10; auto &entry = learner->GetThreadLocal().prediction_entry; HostDeviceVector predictions; for (size_t iter = 0; iter < kIters; ++iter) { learner->Predict(p_data, false, &entry.predictions, 0, 0); learner->Predict(p_data, false, &predictions, 0, 0, false, true); // leaf learner->Predict(p_data, false, &predictions, 0, 0, false, false, true); // contribs } }); } for (auto &thread : threads) { thread.join(); } } TEST(Learner, BinaryModelIO) { size_t constexpr kRows = 8; int32_t constexpr kIters = 4; auto p_dmat = RandomDataGenerator{kRows, 10, 0}.GenerateDMatrix(); p_dmat->Info().labels.Reshape(kRows); std::unique_ptr learner{Learner::Create({p_dmat})}; learner->SetParam("eval_metric", "rmsle"); learner->Configure(); for (int32_t iter = 0; iter < kIters; ++iter) { learner->UpdateOneIter(iter, p_dmat); } dmlc::TemporaryDirectory tempdir; std::string const fname = tempdir.path + "binary_model_io.bin"; { // Make sure the write is complete before loading. std::unique_ptr fo(dmlc::Stream::Create(fname.c_str(), "w")); learner->SaveModel(fo.get()); } learner.reset(Learner::Create({p_dmat})); std::unique_ptr fi(dmlc::Stream::Create(fname.c_str(), "r")); learner->LoadModel(fi.get()); learner->Configure(); Json config { Object() }; learner->SaveConfig(&config); std::string config_str; Json::Dump(config, &config_str); ASSERT_NE(config_str.find("rmsle"), std::string::npos); ASSERT_EQ(config_str.find("WARNING"), std::string::npos); } #if defined(XGBOOST_USE_CUDA) // Tests for automatic GPU configuration. TEST(Learner, GPUConfiguration) { using Arg = std::pair; size_t constexpr kRows = 10; auto p_dmat = RandomDataGenerator(kRows, 10, 0).GenerateDMatrix(); std::vector> mat {p_dmat}; std::vector labels(kRows); for (size_t i = 0; i < labels.size(); ++i) { labels[i] = i; } p_dmat->Info().labels.Data()->HostVector() = labels; p_dmat->Info().labels.Reshape(kRows); { std::unique_ptr learner {Learner::Create(mat)}; learner->SetParams({Arg{"booster", "gblinear"}, Arg{"updater", "gpu_coord_descent"}}); learner->UpdateOneIter(0, p_dmat); ASSERT_EQ(learner->Ctx()->gpu_id, 0); } { std::unique_ptr learner {Learner::Create(mat)}; learner->SetParams({Arg{"tree_method", "gpu_hist"}}); learner->UpdateOneIter(0, p_dmat); ASSERT_EQ(learner->Ctx()->gpu_id, 0); } { std::unique_ptr learner {Learner::Create(mat)}; learner->SetParams({Arg{"tree_method", "gpu_hist"}, Arg{"gpu_id", "-1"}}); learner->UpdateOneIter(0, p_dmat); ASSERT_EQ(learner->Ctx()->gpu_id, 0); } { // with CPU algorithm std::unique_ptr learner {Learner::Create(mat)}; learner->SetParams({Arg{"tree_method", "hist"}}); learner->UpdateOneIter(0, p_dmat); ASSERT_EQ(learner->Ctx()->gpu_id, -1); } { // with CPU algorithm, but `gpu_id` takes priority std::unique_ptr learner {Learner::Create(mat)}; learner->SetParams({Arg{"tree_method", "hist"}, Arg{"gpu_id", "0"}}); learner->UpdateOneIter(0, p_dmat); ASSERT_EQ(learner->Ctx()->gpu_id, 0); } { // With CPU algorithm but GPU Predictor, this is to simulate when // XGBoost is only used for prediction, so tree method is not // specified. std::unique_ptr learner {Learner::Create(mat)}; learner->SetParams({Arg{"tree_method", "hist"}, Arg{"predictor", "gpu_predictor"}}); learner->UpdateOneIter(0, p_dmat); ASSERT_EQ(learner->Ctx()->gpu_id, 0); } } #endif // defined(XGBOOST_USE_CUDA) TEST(Learner, Seed) { auto m = RandomDataGenerator{10, 10, 0}.GenerateDMatrix(); std::unique_ptr learner { Learner::Create({m}) }; auto seed = std::numeric_limits::max(); learner->SetParam("seed", std::to_string(seed)); learner->Configure(); Json config { Object() }; learner->SaveConfig(&config); ASSERT_EQ(std::to_string(seed), get(config["learner"]["generic_param"]["seed"])); seed = std::numeric_limits::min(); learner->SetParam("seed", std::to_string(seed)); learner->Configure(); learner->SaveConfig(&config); ASSERT_EQ(std::to_string(seed), get(config["learner"]["generic_param"]["seed"])); } TEST(Learner, ConstantSeed) { auto m = RandomDataGenerator{10, 10, 0}.GenerateDMatrix(true); std::unique_ptr learner{Learner::Create({m})}; learner->Configure(); // seed the global random std::uniform_real_distribution dist; auto& rng = common::GlobalRandom(); float v_0 = dist(rng); learner->SetParam("", ""); learner->Configure(); // check configure doesn't change the seed. float v_1 = dist(rng); CHECK_NE(v_0, v_1); { rng.seed(GenericParameter::kDefaultSeed); std::uniform_real_distribution dist; float v_2 = dist(rng); CHECK_EQ(v_0, v_2); } } TEST(Learner, FeatureInfo) { size_t constexpr kCols = 10; auto m = RandomDataGenerator{10, kCols, 0}.GenerateDMatrix(true); std::vector names(kCols); for (size_t i = 0; i < kCols; ++i) { names[i] = ("f" + std::to_string(i)); } std::vector types(kCols); for (size_t i = 0; i < kCols; ++i) { types[i] = "q"; } types[8] = "f"; types[0] = "int"; types[3] = "i"; types[7] = "i"; std::vector c_names(kCols); for (size_t i = 0; i < names.size(); ++i) { c_names[i] = names[i].c_str(); } std::vector c_types(kCols); for (size_t i = 0; i < types.size(); ++i) { c_types[i] = names[i].c_str(); } std::vector out_names; std::vector out_types; Json model{Object()}; { std::unique_ptr learner{Learner::Create({m})}; learner->Configure(); learner->SetFeatureNames(names); learner->GetFeatureNames(&out_names); learner->SetFeatureTypes(types); learner->GetFeatureTypes(&out_types); ASSERT_TRUE(std::equal(out_names.begin(), out_names.end(), names.begin())); ASSERT_TRUE(std::equal(out_types.begin(), out_types.end(), types.begin())); learner->SaveModel(&model); } { std::unique_ptr learner{Learner::Create({m})}; learner->LoadModel(model); learner->GetFeatureNames(&out_names); learner->GetFeatureTypes(&out_types); ASSERT_TRUE(std::equal(out_names.begin(), out_names.end(), names.begin())); ASSERT_TRUE(std::equal(out_types.begin(), out_types.end(), types.begin())); } } TEST(Learner, MultiTarget) { size_t constexpr kRows{128}, kCols{10}, kTargets{3}; auto m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(); m->Info().labels.Reshape(kRows, kTargets); linalg::ElementWiseTransformHost(m->Info().labels.HostView(), omp_get_max_threads(), [](auto i, auto) { return i; }); { std::unique_ptr learner{Learner::Create({m})}; learner->Configure(); Json model{Object()}; learner->SaveModel(&model); ASSERT_EQ(get(model["learner"]["learner_model_param"]["num_target"]), std::to_string(kTargets)); } { std::unique_ptr learner{Learner::Create({m})}; learner->SetParam("objective", "multi:softprob"); // unsupported objective. EXPECT_THROW({ learner->Configure(); }, dmlc::Error); } } } // namespace xgboost