import sys from hypothesis import strategies, given, settings, assume, note import pytest import xgboost as xgb sys.path.append("tests/python") import testing as tm parameter_strategy = strategies.fixed_dictionaries({ 'booster': strategies.just('gblinear'), 'eta': strategies.floats(0.01, 0.25), 'tolerance': strategies.floats(1e-5, 1e-2), 'nthread': strategies.integers(1, 4), 'feature_selector': strategies.sampled_from(['cyclic', 'shuffle', 'greedy', 'thrifty']), 'top_k': strategies.integers(1, 10), }) def train_result(param, dmat, num_rounds): result = {} booster = xgb.train( param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False, evals_result=result ) assert booster.num_boosted_rounds() == num_rounds return result class TestGPULinear: @given(parameter_strategy, strategies.integers(10, 50), tm.dataset_strategy) @settings(deadline=None, print_blob=True) def test_gpu_coordinate(self, param, num_rounds, dataset): assume(len(dataset.y) > 0) param['updater'] = 'gpu_coord_descent' param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] note(result) assert tm.non_increasing(result) # Loss is not guaranteed to always decrease because of regularisation parameters # We test a weaker condition that the loss has not increased between the first and last # iteration @given(parameter_strategy, strategies.integers(10, 50), tm.dataset_strategy, strategies.floats(1e-5, 1.0), strategies.floats(1e-5, 1.0)) @settings(deadline=None, print_blob=True) def test_gpu_coordinate_regularised(self, param, num_rounds, dataset, alpha, lambd): assume(len(dataset.y) > 0) param['updater'] = 'gpu_coord_descent' param['alpha'] = alpha param['lambda'] = lambd param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] note(result) assert tm.non_increasing([result[0], result[-1]]) @pytest.mark.skipif(**tm.no_cupy()) def test_gpu_coordinate_from_cupy(self): # Training linear model is quite expensive, so we don't include it in # test_from_cupy.py import cupy params = {'booster': 'gblinear', 'updater': 'gpu_coord_descent', 'n_estimators': 100} X, y = tm.get_california_housing() cpu_model = xgb.XGBRegressor(**params) cpu_model.fit(X, y) cpu_predt = cpu_model.predict(X) X = cupy.array(X) y = cupy.array(y) gpu_model = xgb.XGBRegressor(**params) gpu_model.fit(X, y) gpu_predt = gpu_model.predict(X) cupy.testing.assert_allclose(cpu_predt, gpu_predt)