# -*- coding: utf-8 -*- import numpy as np import os import xgboost as xgb import pytest import json from pathlib import Path import tempfile import testing as tm dpath = 'demo/data/' rng = np.random.RandomState(1994) class TestBasic: def test_compat(self): from xgboost.compat import lazy_isinstance a = np.array([1, 2, 3]) assert lazy_isinstance(a, 'numpy', 'ndarray') assert not lazy_isinstance(a, 'numpy', 'dataframe') def test_basic(self): dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') dtest = xgb.DMatrix(dpath + 'agaricus.txt.test') param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'} # specify validations set to watch performance watchlist = [(dtrain, 'train')] num_round = 2 bst = xgb.train(param, dtrain, num_round, watchlist, verbose_eval=True) preds = bst.predict(dtrain) labels = dtrain.get_label() err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds)) # error must be smaller than 10% assert err < 0.1 preds = bst.predict(dtest) labels = dtest.get_label() err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds)) # error must be smaller than 10% assert err < 0.1 with tempfile.TemporaryDirectory() as tmpdir: dtest_path = os.path.join(tmpdir, 'dtest.dmatrix') # save dmatrix into binary buffer dtest.save_binary(dtest_path) # save model model_path = os.path.join(tmpdir, 'model.booster') bst.save_model(model_path) # load model and data in bst2 = xgb.Booster(model_file=model_path) dtest2 = xgb.DMatrix(dtest_path) preds2 = bst2.predict(dtest2) # assert they are the same assert np.sum(np.abs(preds2 - preds)) == 0 def test_metric_config(self): # Make sure that the metric configuration happens in booster so the # string `['error', 'auc']` doesn't get passed down to core. dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') dtest = xgb.DMatrix(dpath + 'agaricus.txt.test') param = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': ['error', 'auc']} watchlist = [(dtest, 'eval'), (dtrain, 'train')] num_round = 2 booster = xgb.train(param, dtrain, num_round, watchlist) predt_0 = booster.predict(dtrain) with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, 'model.json') booster.save_model(path) booster = xgb.Booster(params=param, model_file=path) predt_1 = booster.predict(dtrain) np.testing.assert_allclose(predt_0, predt_1) def test_multiclass(self): dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') dtest = xgb.DMatrix(dpath + 'agaricus.txt.test') param = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'num_class': 2} # specify validations set to watch performance watchlist = [(dtest, 'eval'), (dtrain, 'train')] num_round = 2 bst = xgb.train(param, dtrain, num_round, watchlist) # this is prediction preds = bst.predict(dtest) labels = dtest.get_label() err = sum(1 for i in range(len(preds)) if preds[i] != labels[i]) / float(len(preds)) # error must be smaller than 10% assert err < 0.1 with tempfile.TemporaryDirectory() as tmpdir: dtest_path = os.path.join(tmpdir, 'dtest.buffer') model_path = os.path.join(tmpdir, 'xgb.model') # save dmatrix into binary buffer dtest.save_binary(dtest_path) # save model bst.save_model(model_path) # load model and data in bst2 = xgb.Booster(model_file=model_path) dtest2 = xgb.DMatrix(dtest_path) preds2 = bst2.predict(dtest2) # assert they are the same assert np.sum(np.abs(preds2 - preds)) == 0 def test_dump(self): data = np.random.randn(100, 2) target = np.array([0, 1] * 50) features = ['Feature1', 'Feature2'] dm = xgb.DMatrix(data, label=target, feature_names=features) params = {'objective': 'binary:logistic', 'eval_metric': 'logloss', 'eta': 0.3, 'max_depth': 1} bst = xgb.train(params, dm, num_boost_round=1) # number of feature importances should == number of features dump1 = bst.get_dump() assert len(dump1) == 1, 'Expected only 1 tree to be dumped.' len(dump1[0].splitlines()) == 3, 'Expected 1 root and 2 leaves - 3 lines in dump.' dump2 = bst.get_dump(with_stats=True) assert dump2[0].count('\n') == 3, 'Expected 1 root and 2 leaves - 3 lines in dump.' msg = 'Expected more info when with_stats=True is given.' assert dump2[0].find('\n') > dump1[0].find('\n'), msg dump3 = bst.get_dump(dump_format="json") dump3j = json.loads(dump3[0]) assert dump3j['nodeid'] == 0, 'Expected the root node on top.' dump4 = bst.get_dump(dump_format="json", with_stats=True) dump4j = json.loads(dump4[0]) assert 'gain' in dump4j, "Expected 'gain' to be dumped in JSON." with pytest.raises(ValueError): bst.get_dump(fmap="foo") def test_feature_score(self): rng = np.random.RandomState(0) data = rng.randn(100, 2) target = np.array([0, 1] * 50) features = ["F0"] with pytest.raises(ValueError): xgb.DMatrix(data, label=target, feature_names=features) params = {"objective": "binary:logistic"} dm = xgb.DMatrix(data, label=target, feature_names=["F0", "F1"]) booster = xgb.train(params, dm, num_boost_round=1) # no error since feature names might be assigned before the booster seeing data # and booster doesn't known about the actual number of features. booster.feature_names = ["F0"] with pytest.raises(ValueError): booster.get_fscore() booster.feature_names = None # Use JSON to make sure the output has native Python type scores = json.loads(json.dumps(booster.get_fscore())) np.testing.assert_allclose(scores["f0"], 6.0) def test_load_file_invalid(self): with pytest.raises(xgb.core.XGBoostError): xgb.Booster(model_file='incorrect_path') with pytest.raises(xgb.core.XGBoostError): xgb.Booster(model_file=u'不正なパス') def test_dmatrix_numpy_init_omp(self): rows = [1000, 11326, 15000] cols = 50 for row in rows: X = np.random.randn(row, cols) y = np.random.randn(row).astype('f') dm = xgb.DMatrix(X, y, nthread=0) np.testing.assert_array_equal(dm.get_label(), y) assert dm.num_row() == row assert dm.num_col() == cols dm = xgb.DMatrix(X, y, nthread=10) np.testing.assert_array_equal(dm.get_label(), y) assert dm.num_row() == row assert dm.num_col() == cols def test_cv(self): dm = xgb.DMatrix(dpath + 'agaricus.txt.train') params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic'} # return np.ndarray cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=False) assert isinstance(cv, dict) assert len(cv) == (4) def test_cv_no_shuffle(self): dm = xgb.DMatrix(dpath + 'agaricus.txt.train') params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic'} # return np.ndarray cv = xgb.cv(params, dm, num_boost_round=10, shuffle=False, nfold=10, as_pandas=False) assert isinstance(cv, dict) assert len(cv) == (4) def test_cv_explicit_fold_indices(self): dm = xgb.DMatrix(dpath + 'agaricus.txt.train') params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic'} folds = [ # Train Test ([1, 3], [5, 8]), ([7, 9], [23, 43]), ] # return np.ndarray cv = xgb.cv(params, dm, num_boost_round=10, folds=folds, as_pandas=False) assert isinstance(cv, dict) assert len(cv) == (4) @pytest.mark.skipif(**tm.skip_s390x()) def test_cv_explicit_fold_indices_labels(self): params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'reg:squarederror'} N = 100 F = 3 dm = xgb.DMatrix(data=np.random.randn(N, F), label=np.arange(N)) folds = [ # Train Test ([1, 3], [5, 8]), ([7, 9], [23, 43, 11]), ] # Use callback to log the test labels in each fold class Callback(xgb.callback.TrainingCallback): def __init__(self) -> None: super().__init__() def after_iteration( self, model, epoch: int, evals_log: xgb.callback.TrainingCallback.EvalsLog ): print([fold.dtest.get_label() for fold in model.cvfolds]) cb = Callback() # Run cross validation and capture standard out to test callback result with tm.captured_output() as (out, err): xgb.cv( params, dm, num_boost_round=1, folds=folds, callbacks=[cb], as_pandas=False ) output = out.getvalue().strip() solution = ('[array([5., 8.], dtype=float32), array([23., 43., 11.],' + ' dtype=float32)]') assert output == solution class TestBasicPathLike: """Unit tests using pathlib.Path for file interaction.""" def test_DMatrix_init_from_path(self): """Initialization from the data path.""" dpath = Path('demo/data') dtrain = xgb.DMatrix(dpath / 'agaricus.txt.train') assert dtrain.num_row() == 6513 assert dtrain.num_col() == 127 def test_DMatrix_save_to_path(self): """Saving to a binary file using pathlib from a DMatrix.""" data = np.random.randn(100, 2) target = np.array([0, 1] * 50) features = ['Feature1', 'Feature2'] dm = xgb.DMatrix(data, label=target, feature_names=features) # save, assert exists, remove file binary_path = Path("dtrain.bin") dm.save_binary(binary_path) assert binary_path.exists() Path.unlink(binary_path) def test_Booster_init_invalid_path(self): """An invalid model_file path should raise XGBoostError.""" with pytest.raises(xgb.core.XGBoostError): xgb.Booster(model_file=Path("invalidpath")) def test_Booster_save_and_load(self): """Saving and loading model files from paths.""" save_path = Path("saveload.model") data = np.random.randn(100, 2) target = np.array([0, 1] * 50) features = ['Feature1', 'Feature2'] dm = xgb.DMatrix(data, label=target, feature_names=features) params = {'objective': 'binary:logistic', 'eval_metric': 'logloss', 'eta': 0.3, 'max_depth': 1} bst = xgb.train(params, dm, num_boost_round=1) # save, assert exists bst.save_model(save_path) assert save_path.exists() def dump_assertions(dump): """Assertions for the expected dump from Booster""" assert len(dump) == 1, 'Exepcted only 1 tree to be dumped.' assert len(dump[0].splitlines()) == 3, 'Expected 1 root and 2 leaves - 3 lines.' # load the model again using Path bst2 = xgb.Booster(model_file=save_path) dump2 = bst2.get_dump() dump_assertions(dump2) # load again using load_model bst3 = xgb.Booster() bst3.load_model(save_path) dump3 = bst3.get_dump() dump_assertions(dump3) # remove file Path.unlink(save_path)