import xgboost as xgb import testing as tm import numpy as np import pytest import os import tempfile rng = np.random.RandomState(1337) class TestTrainingContinuation: num_parallel_tree = 3 def generate_parameters(self): xgb_params_01_binary = { 'nthread': 1, } xgb_params_02_binary = { 'nthread': 1, 'num_parallel_tree': self.num_parallel_tree } xgb_params_03_binary = { 'nthread': 1, 'num_class': 5, 'num_parallel_tree': self.num_parallel_tree } return [ xgb_params_01_binary, xgb_params_02_binary, xgb_params_03_binary ] def run_training_continuation(self, xgb_params_01, xgb_params_02, xgb_params_03): from sklearn.datasets import load_digits from sklearn.metrics import mean_squared_error digits_2class = load_digits(n_class=2) digits_5class = load_digits(n_class=5) X_2class = digits_2class['data'] y_2class = digits_2class['target'] X_5class = digits_5class['data'] y_5class = digits_5class['target'] dtrain_2class = xgb.DMatrix(X_2class, label=y_2class) dtrain_5class = xgb.DMatrix(X_5class, label=y_5class) gbdt_01 = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=10) ntrees_01 = len(gbdt_01.get_dump()) assert ntrees_01 == 10 gbdt_02 = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=0) gbdt_02.save_model('xgb_tc.model') gbdt_02a = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=10, xgb_model=gbdt_02) gbdt_02b = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=10, xgb_model="xgb_tc.model") ntrees_02a = len(gbdt_02a.get_dump()) ntrees_02b = len(gbdt_02b.get_dump()) assert ntrees_02a == 10 assert ntrees_02b == 10 res1 = mean_squared_error(y_2class, gbdt_01.predict(dtrain_2class)) res2 = mean_squared_error(y_2class, gbdt_02a.predict(dtrain_2class)) assert res1 == res2 res1 = mean_squared_error(y_2class, gbdt_01.predict(dtrain_2class)) res2 = mean_squared_error(y_2class, gbdt_02b.predict(dtrain_2class)) assert res1 == res2 gbdt_03 = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=3) gbdt_03.save_model('xgb_tc.model') gbdt_03a = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=7, xgb_model=gbdt_03) gbdt_03b = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=7, xgb_model="xgb_tc.model") ntrees_03a = len(gbdt_03a.get_dump()) ntrees_03b = len(gbdt_03b.get_dump()) assert ntrees_03a == 10 assert ntrees_03b == 10 os.remove('xgb_tc.model') res1 = mean_squared_error(y_2class, gbdt_03a.predict(dtrain_2class)) res2 = mean_squared_error(y_2class, gbdt_03b.predict(dtrain_2class)) assert res1 == res2 gbdt_04 = xgb.train(xgb_params_02, dtrain_2class, num_boost_round=3) assert gbdt_04.best_ntree_limit == (gbdt_04.best_iteration + 1) * self.num_parallel_tree res1 = mean_squared_error(y_2class, gbdt_04.predict(dtrain_2class)) res2 = mean_squared_error(y_2class, gbdt_04.predict( dtrain_2class, ntree_limit=gbdt_04.best_ntree_limit)) assert res1 == res2 gbdt_04 = xgb.train(xgb_params_02, dtrain_2class, num_boost_round=7, xgb_model=gbdt_04) assert gbdt_04.best_ntree_limit == ( gbdt_04.best_iteration + 1) * self.num_parallel_tree res1 = mean_squared_error(y_2class, gbdt_04.predict(dtrain_2class)) res2 = mean_squared_error(y_2class, gbdt_04.predict( dtrain_2class, ntree_limit=gbdt_04.best_ntree_limit)) assert res1 == res2 gbdt_05 = xgb.train(xgb_params_03, dtrain_5class, num_boost_round=7) assert gbdt_05.best_ntree_limit == ( gbdt_05.best_iteration + 1) * self.num_parallel_tree gbdt_05 = xgb.train(xgb_params_03, dtrain_5class, num_boost_round=3, xgb_model=gbdt_05) assert gbdt_05.best_ntree_limit == ( gbdt_05.best_iteration + 1) * self.num_parallel_tree res1 = gbdt_05.predict(dtrain_5class) res2 = gbdt_05.predict(dtrain_5class, ntree_limit=gbdt_05.best_ntree_limit) np.testing.assert_almost_equal(res1, res2) @pytest.mark.skipif(**tm.no_sklearn()) def test_training_continuation_json(self): params = self.generate_parameters() self.run_training_continuation(params[0], params[1], params[2]) @pytest.mark.skipif(**tm.no_sklearn()) def test_training_continuation_updaters_json(self): # Picked up from R tests. updaters = 'grow_colmaker,prune,refresh' params = self.generate_parameters() for p in params: p['updater'] = updaters self.run_training_continuation(params[0], params[1], params[2]) @pytest.mark.skipif(**tm.no_sklearn()) def test_changed_parameter(self): from sklearn.datasets import load_breast_cancer X, y = load_breast_cancer(return_X_y=True) clf = xgb.XGBClassifier(n_estimators=2, use_label_encoder=False) clf.fit(X, y, eval_set=[(X, y)], eval_metric="logloss") assert tm.non_increasing(clf.evals_result()["validation_0"]["logloss"]) with tempfile.TemporaryDirectory() as tmpdir: clf.save_model(os.path.join(tmpdir, "clf.json")) loaded = xgb.XGBClassifier(use_label_encoder=False) loaded.load_model(os.path.join(tmpdir, "clf.json")) clf = xgb.XGBClassifier(n_estimators=2, use_label_encoder=False) # change metric to error clf.fit(X, y, eval_set=[(X, y)], eval_metric="error") assert tm.non_increasing(clf.evals_result()["validation_0"]["error"])