# -*- coding: utf-8 -*- import numpy as np import xgboost as xgb import testing as tm import pytest from test_dmatrix import set_base_margin_info try: import modin.pandas as md except ImportError: pass pytestmark = pytest.mark.skipif(**tm.no_modin()) dpath = 'demo/data/' rng = np.random.RandomState(1994) class TestModin: def test_modin(self): df = md.DataFrame([[1, 2., True], [2, 3., False]], columns=['a', 'b', 'c']) dm = xgb.DMatrix(df, label=md.Series([1, 2])) assert dm.feature_names == ['a', 'b', 'c'] assert dm.feature_types == ['int', 'float', 'i'] assert dm.num_row() == 2 assert dm.num_col() == 3 np.testing.assert_array_equal(dm.get_label(), np.array([1, 2])) # overwrite feature_names and feature_types dm = xgb.DMatrix(df, label=md.Series([1, 2]), feature_names=['x', 'y', 'z'], feature_types=['q', 'q', 'q']) assert dm.feature_names == ['x', 'y', 'z'] assert dm.feature_types == ['q', 'q', 'q'] assert dm.num_row() == 2 assert dm.num_col() == 3 # incorrect dtypes df = md.DataFrame([[1, 2., 'x'], [2, 3., 'y']], columns=['a', 'b', 'c']) with pytest.raises(ValueError): xgb.DMatrix(df) # numeric columns df = md.DataFrame([[1, 2., True], [2, 3., False]]) dm = xgb.DMatrix(df, label=md.Series([1, 2])) assert dm.feature_names == ['0', '1', '2'] assert dm.feature_types == ['int', 'float', 'i'] assert dm.num_row() == 2 assert dm.num_col() == 3 np.testing.assert_array_equal(dm.get_label(), np.array([1, 2])) df = md.DataFrame([[1, 2., 1], [2, 3., 1]], columns=[4, 5, 6]) dm = xgb.DMatrix(df, label=md.Series([1, 2])) assert dm.feature_names == ['4', '5', '6'] assert dm.feature_types == ['int', 'float', 'int'] assert dm.num_row() == 2 assert dm.num_col() == 3 df = md.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]}) dummies = md.get_dummies(df) # B A_X A_Y A_Z # 0 1 1 0 0 # 1 2 0 1 0 # 2 3 0 0 1 result, _, _ = xgb.data._transform_pandas_df(dummies, enable_categorical=False) exp = np.array([[1., 1., 0., 0.], [2., 0., 1., 0.], [3., 0., 0., 1.]]) np.testing.assert_array_equal(result, exp) dm = xgb.DMatrix(dummies) assert dm.feature_names == ['B', 'A_X', 'A_Y', 'A_Z'] assert dm.feature_types == ['int', 'int', 'int', 'int'] assert dm.num_row() == 3 assert dm.num_col() == 4 df = md.DataFrame({'A=1': [1, 2, 3], 'A=2': [4, 5, 6]}) dm = xgb.DMatrix(df) assert dm.feature_names == ['A=1', 'A=2'] assert dm.feature_types == ['int', 'int'] assert dm.num_row() == 3 assert dm.num_col() == 2 df_int = md.DataFrame([[1, 1.1], [2, 2.2]], columns=[9, 10]) dm_int = xgb.DMatrix(df_int) df_range = md.DataFrame([[1, 1.1], [2, 2.2]], columns=range(9, 11, 1)) dm_range = xgb.DMatrix(df_range) assert dm_int.feature_names == ['9', '10'] # assert not "9 " assert dm_int.feature_names == dm_range.feature_names # test MultiIndex as columns df = md.DataFrame( [ (1, 2, 3, 4, 5, 6), (6, 5, 4, 3, 2, 1) ], columns=md.MultiIndex.from_tuples(( ('a', 1), ('a', 2), ('a', 3), ('b', 1), ('b', 2), ('b', 3), )) ) dm = xgb.DMatrix(df) assert dm.feature_names == ['a 1', 'a 2', 'a 3', 'b 1', 'b 2', 'b 3'] assert dm.feature_types == ['int', 'int', 'int', 'int', 'int', 'int'] assert dm.num_row() == 2 assert dm.num_col() == 6 def test_modin_label(self): # label must be a single column df = md.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]}) with pytest.raises(ValueError): xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float') # label must be supported dtype df = md.DataFrame({'A': np.array(['a', 'b', 'c'], dtype=object)}) with pytest.raises(ValueError): xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float') df = md.DataFrame({'A': np.array([1, 2, 3], dtype=int)}) result, _, _ = xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float') np.testing.assert_array_equal(result, np.array([[1.], [2.], [3.]], dtype=float)) dm = xgb.DMatrix(np.random.randn(3, 2), label=df) assert dm.num_row() == 3 assert dm.num_col() == 2 def test_modin_weight(self): kRows = 32 kCols = 8 X = np.random.randn(kRows, kCols) y = np.random.randn(kRows) w = np.random.uniform(size=kRows).astype(np.float32) w_pd = md.DataFrame(w) data = xgb.DMatrix(X, y, w_pd) assert data.num_row() == kRows assert data.num_col() == kCols np.testing.assert_array_equal(data.get_weight(), w) def test_base_margin(self): set_base_margin_info(md.DataFrame, xgb.DMatrix, "hist")