/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2016, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /****************************************************************************** * Test of DeviceHistogram utilities ******************************************************************************/ // Ensure printing of CUDA runtime errors to console #define CUB_STDERR #include #include #include #include #if defined(QUICK_TEST) || defined(QUICKER_TEST) #include #endif #include #include #include "test_util.h" using namespace cub; //--------------------------------------------------------------------- // Globals, constants and typedefs //--------------------------------------------------------------------- // Dispatch types enum Backend { CUB, // CUB method NPP, // NPP method CDP, // GPU-based (dynamic parallelism) dispatch to CUB method }; bool g_verbose_input = false; bool g_verbose = false; int g_timing_iterations = 0; int g_repeat = 0; CachingDeviceAllocator g_allocator(true); //--------------------------------------------------------------------- // Dispatch to NPP histogram //--------------------------------------------------------------------- #if defined(QUICK_TEST) || defined(QUICKER_TEST) /** * Dispatch to single-channel 8b NPP histo-even */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t DispatchEven( Int2Type<1> num_channels, Int2Type<1> num_active_channels, Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, unsigned char *d_samples, ///< [in] The pointer to the multi-channel input sequence of data samples. The samples from different channels are assumed to be interleaved (e.g., an array of 32-bit pixels where each pixel consists of four RGBA 8-bit samples). CounterT *d_histogram[1], ///< [out] The pointers to the histogram counter output arrays, one for each active channel. For channeli, the allocation length of d_histograms[i] should be num_levels[i] - 1. int num_levels[1], ///< [in] The number of boundaries (levels) for delineating histogram samples in each active channel. Implies that the number of bins for channeli is num_levels[i] - 1. LevelT lower_level[1], ///< [in] The lower sample value bound (inclusive) for the lowest histogram bin in each active channel. LevelT upper_level[1], ///< [in] The upper sample value bound (exclusive) for the highest histogram bin in each active channel. OffsetT num_row_pixels, ///< [in] The number of multi-channel pixels per row in the region of interest OffsetT num_rows, ///< [in] The number of rows in the region of interest OffsetT row_stride_bytes, ///< [in] The number of bytes between starts of consecutive rows in the region of interest cudaStream_t stream, bool debug_synchronous) { typedef unsigned char SampleT; cudaError_t error = cudaSuccess; NppiSize oSizeROI = { num_row_pixels, num_rows }; if (d_temp_storage_bytes == NULL) { int nDeviceBufferSize; nppiHistogramEvenGetBufferSize_8u_C1R(oSizeROI, num_levels[0] ,&nDeviceBufferSize); temp_storage_bytes = nDeviceBufferSize; } else { for (int i = 0; i < timing_timing_iterations; ++i) { // compute the histogram nppiHistogramEven_8u_C1R( d_samples, row_stride_bytes, oSizeROI, d_histogram[0], num_levels[0], lower_level[0], upper_level[0], (Npp8u*) d_temp_storage); } } return error; } /** * Dispatch to 3/4 8b NPP histo-even */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t DispatchEven( Int2Type<4> num_channels, Int2Type<3> num_active_channels, Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, unsigned char *d_samples, ///< [in] The pointer to the multi-channel input sequence of data samples. The samples from different channels are assumed to be interleaved (e.g., an array of 32-bit pixels where each pixel consists of four RGBA 8-bit samples). CounterT *d_histogram[3], ///< [out] The pointers to the histogram counter output arrays, one for each active channel. For channeli, the allocation length of d_histograms[i] should be num_levels[i] - 1. int num_levels[3], ///< [in] The number of boundaries (levels) for delineating histogram samples in each active channel. Implies that the number of bins for channeli is num_levels[i] - 1. LevelT lower_level[3], ///< [in] The lower sample value bound (inclusive) for the lowest histogram bin in each active channel. LevelT upper_level[3], ///< [in] The upper sample value bound (exclusive) for the highest histogram bin in each active channel. OffsetT num_row_pixels, ///< [in] The number of multi-channel pixels per row in the region of interest OffsetT num_rows, ///< [in] The number of rows in the region of interest OffsetT row_stride_bytes, ///< [in] The number of bytes between starts of consecutive rows in the region of interest cudaStream_t stream, bool debug_synchronous) { typedef unsigned char SampleT; cudaError_t error = cudaSuccess; NppiSize oSizeROI = { num_row_pixels, num_rows }; if (d_temp_storage_bytes == NULL) { int nDeviceBufferSize; nppiHistogramEvenGetBufferSize_8u_AC4R(oSizeROI, num_levels ,&nDeviceBufferSize); temp_storage_bytes = nDeviceBufferSize; } else { for (int i = 0; i < timing_timing_iterations; ++i) { // compute the histogram nppiHistogramEven_8u_AC4R( d_samples, row_stride_bytes, oSizeROI, d_histogram, num_levels, lower_level, upper_level, (Npp8u*) d_temp_storage); } } return error; } #endif // #if defined(QUICK_TEST) || defined(QUICKER_TEST) //--------------------------------------------------------------------- // Dispatch to different DeviceHistogram entrypoints //--------------------------------------------------------------------- /** * Dispatch to CUB single histogram-even entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t DispatchEven( Int2Type<1> num_channels, Int2Type<1> num_active_channels, Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, SampleIteratorT d_samples, ///< [in] The pointer to the multi-channel input sequence of data samples. The samples from different channels are assumed to be interleaved (e.g., an array of 32-bit pixels where each pixel consists of four RGBA 8-bit samples). CounterT *d_histogram[1], ///< [out] The pointers to the histogram counter output arrays, one for each active channel. For channeli, the allocation length of d_histograms[i] should be num_levels[i] - 1. int num_levels[1], ///< [in] The number of boundaries (levels) for delineating histogram samples in each active channel. Implies that the number of bins for channeli is num_levels[i] - 1. LevelT lower_level[1], ///< [in] The lower sample value bound (inclusive) for the lowest histogram bin in each active channel. LevelT upper_level[1], ///< [in] The upper sample value bound (exclusive) for the highest histogram bin in each active channel. OffsetT num_row_pixels, ///< [in] The number of multi-channel pixels per row in the region of interest OffsetT num_rows, ///< [in] The number of rows in the region of interest OffsetT row_stride_bytes, ///< [in] The number of bytes between starts of consecutive rows in the region of interest cudaStream_t stream, bool debug_synchronous) { typedef typename std::iterator_traits::value_type SampleT; cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceHistogram::HistogramEven( d_temp_storage, temp_storage_bytes, (const SampleT *) d_samples, d_histogram[0], num_levels[0], lower_level[0], upper_level[0], num_row_pixels, num_rows, row_stride_bytes, stream, debug_synchronous); } return error; } /** * Dispatch to CUB multi histogram-even entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t DispatchEven( Int2Type num_channels, Int2Type num_active_channels, Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, SampleIteratorT d_samples, ///< [in] The pointer to the multi-channel input sequence of data samples. The samples from different channels are assumed to be interleaved (e.g., an array of 32-bit pixels where each pixel consists of four RGBA 8-bit samples). CounterT *d_histogram[NUM_ACTIVE_CHANNELS], ///< [out] The pointers to the histogram counter output arrays, one for each active channel. For channeli, the allocation length of d_histograms[i] should be num_levels[i] - 1. int num_levels[NUM_ACTIVE_CHANNELS], ///< [in] The number of boundaries (levels) for delineating histogram samples in each active channel. Implies that the number of bins for channeli is num_levels[i] - 1. LevelT lower_level[NUM_ACTIVE_CHANNELS], ///< [in] The lower sample value bound (inclusive) for the lowest histogram bin in each active channel. LevelT upper_level[NUM_ACTIVE_CHANNELS], ///< [in] The upper sample value bound (exclusive) for the highest histogram bin in each active channel. OffsetT num_row_pixels, ///< [in] The number of multi-channel pixels per row in the region of interest OffsetT num_rows, ///< [in] The number of rows in the region of interest OffsetT row_stride_bytes, ///< [in] The number of bytes between starts of consecutive rows in the region of interest cudaStream_t stream, bool debug_synchronous) { typedef typename std::iterator_traits::value_type SampleT; cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceHistogram::MultiHistogramEven( d_temp_storage, temp_storage_bytes, (const SampleT *) d_samples, d_histogram, num_levels, lower_level, upper_level, num_row_pixels, num_rows, row_stride_bytes, stream, debug_synchronous); } return error; } /** * Dispatch to CUB single histogram-range entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t DispatchRange( Int2Type<1> num_channels, Int2Type<1> num_active_channels, Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, SampleIteratorT d_samples, ///< [in] The pointer to the multi-channel input sequence of data samples. The samples from different channels are assumed to be interleaved (e.g., an array of 32-bit pixels where each pixel consists of four RGBA 8-bit samples). CounterT *d_histogram[1], ///< [out] The pointers to the histogram counter output arrays, one for each active channel. For channeli, the allocation length of d_histograms[i] should be num_levels[i] - 1. int num_levels[1], ///< [in] The number of boundaries (levels) for delineating histogram samples in each active channel. Implies that the number of bins for channeli is num_levels[i] - 1. LevelT *d_levels[1], ///< [in] The pointers to the arrays of boundaries (levels), one for each active channel. Bin ranges are defined by consecutive boundary pairings: lower sample value boundaries are inclusive and upper sample value boundaries are exclusive. OffsetT num_row_pixels, ///< [in] The number of multi-channel pixels per row in the region of interest OffsetT num_rows, ///< [in] The number of rows in the region of interest OffsetT row_stride_bytes, ///< [in] The number of bytes between starts of consecutive rows in the region of interest cudaStream_t stream, bool debug_synchronous) { typedef typename std::iterator_traits::value_type SampleT; cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceHistogram::HistogramRange( d_temp_storage, temp_storage_bytes, (const SampleT *) d_samples, d_histogram[0], num_levels[0], d_levels[0], num_row_pixels, num_rows, row_stride_bytes, stream, debug_synchronous); } return error; } /** * Dispatch to CUB multi histogram-range entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t DispatchRange( Int2Type num_channels, Int2Type num_active_channels, Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, SampleIteratorT d_samples, ///< [in] The pointer to the multi-channel input sequence of data samples. The samples from different channels are assumed to be interleaved (e.g., an array of 32-bit pixels where each pixel consists of four RGBA 8-bit samples). CounterT *d_histogram[NUM_ACTIVE_CHANNELS], ///< [out] The pointers to the histogram counter output arrays, one for each active channel. For channeli, the allocation length of d_histograms[i] should be num_levels[i] - 1. int num_levels[NUM_ACTIVE_CHANNELS], ///< [in] The number of boundaries (levels) for delineating histogram samples in each active channel. Implies that the number of bins for channeli is num_levels[i] - 1. LevelT *d_levels[NUM_ACTIVE_CHANNELS], ///< [in] The pointers to the arrays of boundaries (levels), one for each active channel. Bin ranges are defined by consecutive boundary pairings: lower sample value boundaries are inclusive and upper sample value boundaries are exclusive. OffsetT num_row_pixels, ///< [in] The number of multi-channel pixels per row in the region of interest OffsetT num_rows, ///< [in] The number of rows in the region of interest OffsetT row_stride_bytes, ///< [in] The number of bytes between starts of consecutive rows in the region of interest cudaStream_t stream, bool debug_synchronous) { typedef typename std::iterator_traits::value_type SampleT; cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceHistogram::MultiHistogramRange( d_temp_storage, temp_storage_bytes, (const SampleT *) d_samples, d_histogram, num_levels, d_levels, num_row_pixels, num_rows, row_stride_bytes, stream, debug_synchronous); } return error; } //--------------------------------------------------------------------- // CUDA nested-parallelism test kernel //--------------------------------------------------------------------- /** * Simple wrapper kernel to invoke DeviceHistogram * / template __global__ void CnpDispatchKernel( Int2Type algorithm, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t temp_storage_bytes, SampleT *d_samples, SampleIteratorT d_sample_itr, ArrayWrapper d_out_histograms, int num_samples, bool debug_synchronous) { #ifndef CUB_CDP *d_cdp_error = cudaErrorNotSupported; #else *d_cdp_error = Dispatch(algorithm, Int2Type(), timing_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_samples, d_sample_itr, d_out_histograms.array, num_samples, 0, debug_synchronous); *d_temp_storage_bytes = temp_storage_bytes; #endif } / ** * Dispatch to CDP kernel * / template cudaError_t Dispatch( Int2Type algorithm, Int2Type use_cdp, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, SampleT *d_samples, SampleIteratorT d_sample_itr, CounterT *d_histograms[NUM_ACTIVE_CHANNELS], int num_samples, cudaStream_t stream, bool debug_synchronous) { // Setup array wrapper for histogram channel output (because we can't pass static arrays as kernel parameters) ArrayWrapper d_histo_wrapper; for (int CHANNEL = 0; CHANNEL < NUM_ACTIVE_CHANNELS; ++CHANNEL) d_histo_wrapper.array[CHANNEL] = d_histograms[CHANNEL]; // Invoke kernel to invoke device-side dispatch CnpDispatchKernel<<<1,1>>>(algorithm, timing_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_samples, d_sample_itr, d_histo_wrapper, num_samples, debug_synchronous); // Copy out temp_storage_bytes CubDebugExit(cudaMemcpy(&temp_storage_bytes, d_temp_storage_bytes, sizeof(size_t) * 1, cudaMemcpyDeviceToHost)); // Copy out error cudaError_t retval; CubDebugExit(cudaMemcpy(&retval, d_cdp_error, sizeof(cudaError_t) * 1, cudaMemcpyDeviceToHost)); return retval; } */ //--------------------------------------------------------------------- // Test generation //--------------------------------------------------------------------- // Searches for bin given a list of bin-boundary levels template struct SearchTransform { LevelT *levels; // Pointer to levels array int num_levels; // Number of levels in array // Functor for converting samples to bin-ids (num_levels is returned if sample is out of range) template int operator()(SampleT sample) { int bin = int(std::upper_bound(levels, levels + num_levels, (LevelT) sample) - levels - 1); if (bin < 0) { // Sample out of range return num_levels; } return bin; } }; // Scales samples to evenly-spaced bins template struct ScaleTransform { int num_levels; // Number of levels in array LevelT max; // Max sample level (exclusive) LevelT min; // Min sample level (inclusive) LevelT scale; // Bin scaling factor void Init( int num_levels, // Number of levels in array LevelT max, // Max sample level (exclusive) LevelT min, // Min sample level (inclusive) LevelT scale) // Bin scaling factor { this->num_levels = num_levels; this->max = max; this->min = min; this->scale = scale; } // Functor for converting samples to bin-ids (num_levels is returned if sample is out of range) template int operator()(SampleT sample) { if ((sample < min) || (sample >= max)) { // Sample out of range return num_levels; } return (int) ((((LevelT) sample) - min) / scale); } }; // Scales samples to evenly-spaced bins template <> struct ScaleTransform { int num_levels; // Number of levels in array float max; // Max sample level (exclusive) float min; // Min sample level (inclusive) float scale; // Bin scaling factor void Init( int num_levels, // Number of levels in array float max, // Max sample level (exclusive) float min, // Min sample level (inclusive) float scale) // Bin scaling factor { this->num_levels = num_levels; this->max = max; this->min = min; this->scale = 1.0f / scale; } // Functor for converting samples to bin-ids (num_levels is returned if sample is out of range) template int operator()(SampleT sample) { if ((sample < min) || (sample >= max)) { // Sample out of range return num_levels; } return (int) ((((float) sample) - min) * scale); } }; /** * Generate sample */ template void Sample(T &datum, LevelT max_level, int entropy_reduction) { unsigned int max = (unsigned int) -1; unsigned int bits; RandomBits(bits, entropy_reduction); float fraction = (float(bits) / max); datum = (T) (fraction * max_level); } /** * Initialize histogram problem (and solution) */ template < int NUM_CHANNELS, int NUM_ACTIVE_CHANNELS, typename LevelT, typename SampleT, typename CounterT, typename TransformOp, typename OffsetT> void Initialize( LevelT max_level, int entropy_reduction, SampleT *h_samples, int num_levels[NUM_ACTIVE_CHANNELS], ///< [in] The number of boundaries (levels) for delineating histogram samples in each active channel. Implies that the number of bins for channeli is num_levels[i] - 1. TransformOp transform_op[NUM_ACTIVE_CHANNELS], ///< [in] The lower sample value bound (inclusive) for the lowest histogram bin in each active channel. CounterT *h_histogram[NUM_ACTIVE_CHANNELS], ///< [out] The pointers to the histogram counter output arrays, one for each active channel. For channeli, the allocation length of d_histograms[i] should be num_levels[i] - 1. OffsetT num_row_pixels, ///< [in] The number of multi-channel pixels per row in the region of interest OffsetT num_rows, ///< [in] The number of rows in the region of interest OffsetT row_stride_bytes) ///< [in] The number of bytes between starts of consecutive rows in the region of interest { printf("Initializing... "); fflush(stdout); // Init bins for (int CHANNEL = 0; CHANNEL < NUM_ACTIVE_CHANNELS; ++CHANNEL) { for (int bin = 0; bin < num_levels[CHANNEL] - 1; ++bin) { h_histogram[CHANNEL][bin] = 0; } } // Initialize samples if (g_verbose_input) printf("Samples: \n"); for (OffsetT row = 0; row < num_rows; ++row) { for (OffsetT pixel = 0; pixel < num_row_pixels; ++pixel) { if (g_verbose_input) printf("["); for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) { // Sample offset OffsetT offset = (row * (row_stride_bytes / sizeof(SampleT))) + (pixel * NUM_CHANNELS) + channel; // Init sample value Sample(h_samples[offset], max_level, entropy_reduction); if (g_verbose_input) { if (channel > 0) printf(", "); std::cout << CoutCast(h_samples[offset]); } // Update sample bin int bin = transform_op[channel](h_samples[offset]); if (g_verbose_input) printf(" (%d)", bin); fflush(stdout); if ((bin >= 0) && (bin < num_levels[channel] - 1)) { // valid bin h_histogram[channel][bin]++; } } if (g_verbose_input) printf("]"); } if (g_verbose_input) printf("\n\n"); } printf("Done\n"); fflush(stdout); } /** * Test histogram-even */ template < Backend BACKEND, int NUM_CHANNELS, int NUM_ACTIVE_CHANNELS, typename SampleT, typename CounterT, typename LevelT, typename OffsetT> void TestEven( LevelT max_level, int entropy_reduction, int num_levels[NUM_ACTIVE_CHANNELS], ///< [in] The number of boundaries (levels) for delineating histogram samples in each active channel. Implies that the number of bins for channeli is num_levels[i] - 1. LevelT lower_level[NUM_ACTIVE_CHANNELS], ///< [in] The lower sample value bound (inclusive) for the lowest histogram bin in each active channel. LevelT upper_level[NUM_ACTIVE_CHANNELS], ///< [in] The upper sample value bound (exclusive) for the highest histogram bin in each active channel. OffsetT num_row_pixels, ///< [in] The number of multi-channel pixels per row in the region of interest OffsetT num_rows, ///< [in] The number of rows in the region of interest OffsetT row_stride_bytes) ///< [in] The number of bytes between starts of consecutive rows in the region of interest { OffsetT total_samples = num_rows * (row_stride_bytes / sizeof(SampleT)); printf("\n----------------------------\n"); printf("%s cub::DeviceHistogramEven %d pixels (%d height, %d width, %d-byte row stride), %d %d-byte %s samples (entropy reduction %d), %s counters, %d/%d channels, max sample ", (BACKEND == CDP) ? "CDP CUB" : (BACKEND == NPP) ? "NPP" : "CUB", (int) (num_row_pixels * num_rows), (int) num_rows, (int) num_row_pixels, (int) row_stride_bytes, (int) total_samples, (int) sizeof(SampleT), typeid(SampleT).name(), entropy_reduction, typeid(CounterT).name(), NUM_ACTIVE_CHANNELS, NUM_CHANNELS); std::cout << CoutCast(max_level) << "\n"; for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) std::cout << "\n\tChannel " << channel << ": " << num_levels[channel] - 1 << " bins [" << lower_level[channel] << ", " << upper_level[channel] << ")\n"; fflush(stdout); // Allocate and initialize host and device data typedef SampleT Foo; // rename type to quelch gcc warnings (bug?) SampleT* h_samples = new Foo[total_samples]; CounterT* h_histogram[NUM_ACTIVE_CHANNELS]; ScaleTransform transform_op[NUM_ACTIVE_CHANNELS]; for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) { int bins = num_levels[channel] - 1; h_histogram[channel] = new CounterT[bins]; transform_op[channel].Init( num_levels[channel], upper_level[channel], lower_level[channel], ((upper_level[channel] - lower_level[channel]) / bins)); } Initialize( max_level, entropy_reduction, h_samples, num_levels, transform_op, h_histogram, num_row_pixels, num_rows, row_stride_bytes); // Allocate and initialize device data SampleT* d_samples = NULL; CounterT* d_histogram[NUM_ACTIVE_CHANNELS]; CubDebugExit(g_allocator.DeviceAllocate((void**)&d_samples, sizeof(SampleT) * total_samples)); CubDebugExit(cudaMemcpy(d_samples, h_samples, sizeof(SampleT) * total_samples, cudaMemcpyHostToDevice)); for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) { CubDebugExit(g_allocator.DeviceAllocate((void**)&d_histogram[channel], sizeof(CounterT) * (num_levels[channel] - 1))); CubDebugExit(cudaMemset(d_histogram[channel], 0, sizeof(CounterT) * (num_levels[channel] - 1))); } // Allocate CDP device arrays size_t *d_temp_storage_bytes = NULL; cudaError_t *d_cdp_error = NULL; CubDebugExit(g_allocator.DeviceAllocate((void**)&d_temp_storage_bytes, sizeof(size_t) * 1)); CubDebugExit(g_allocator.DeviceAllocate((void**)&d_cdp_error, sizeof(cudaError_t) * 1)); // Allocate temporary storage void *d_temp_storage = NULL; size_t temp_storage_bytes = 0; DispatchEven( Int2Type(), Int2Type(), Int2Type(), 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_samples, d_histogram, num_levels, lower_level, upper_level, num_row_pixels, num_rows, row_stride_bytes, 0, true); // Allocate temporary storage with "canary" zones int canary_bytes = 256; char canary_token = 8; char* canary_zone = new char[canary_bytes]; memset(canary_zone, canary_token, canary_bytes); CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes + (canary_bytes * 2))); CubDebugExit(cudaMemset(d_temp_storage, canary_token, temp_storage_bytes + (canary_bytes * 2))); // Run warmup/correctness iteration DispatchEven( Int2Type(), Int2Type(), Int2Type(), 1, d_temp_storage_bytes, d_cdp_error, ((char *) d_temp_storage) + canary_bytes, temp_storage_bytes, d_samples, d_histogram, num_levels, lower_level, upper_level, num_row_pixels, num_rows, row_stride_bytes, 0, true); // Check canary zones int error = CompareDeviceResults(canary_zone, (char *) d_temp_storage, canary_bytes, true, g_verbose); AssertEquals(0, error); error = CompareDeviceResults(canary_zone, ((char *) d_temp_storage) + canary_bytes + temp_storage_bytes, canary_bytes, true, g_verbose); AssertEquals(0, error); // Flush any stdout/stderr CubDebugExit(cudaPeekAtLastError()); CubDebugExit(cudaDeviceSynchronize()); fflush(stdout); fflush(stderr); // Check for correctness (and display results, if specified) for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) { int channel_error = CompareDeviceResults(h_histogram[channel], d_histogram[channel], num_levels[channel] - 1, true, g_verbose); printf("\tChannel %d %s", channel, channel_error ? "FAIL" : "PASS\n"); error |= channel_error; } // Performance GpuTimer gpu_timer; gpu_timer.Start(); DispatchEven( Int2Type(), Int2Type(), Int2Type(), g_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_samples, d_histogram, num_levels, lower_level, upper_level, num_row_pixels, num_rows, row_stride_bytes, 0, false); gpu_timer.Stop(); float elapsed_millis = gpu_timer.ElapsedMillis(); // Display performance if (g_timing_iterations > 0) { float avg_millis = elapsed_millis / g_timing_iterations; float giga_rate = float(total_samples) / avg_millis / 1000.0f / 1000.0f; float giga_bandwidth = giga_rate * sizeof(SampleT); printf("\t%.3f avg ms, %.3f billion samples/s, %.3f billion bins/s, %.3f billion pixels/s, %.3f logical GB/s", avg_millis, giga_rate, giga_rate * NUM_ACTIVE_CHANNELS / NUM_CHANNELS, giga_rate / NUM_CHANNELS, giga_bandwidth); } printf("\n\n"); // Cleanup if (h_samples) delete[] h_samples; for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) { if (h_histogram[channel]) delete[] h_histogram[channel]; if (d_histogram[channel]) CubDebugExit(g_allocator.DeviceFree(d_histogram[channel])); } if (d_samples) CubDebugExit(g_allocator.DeviceFree(d_samples)); if (d_temp_storage_bytes) CubDebugExit(g_allocator.DeviceFree(d_temp_storage_bytes)); if (d_cdp_error) CubDebugExit(g_allocator.DeviceFree(d_cdp_error)); if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage)); // Correctness asserts AssertEquals(0, error); } /** * Test histogram-range */ template < Backend BACKEND, int NUM_CHANNELS, int NUM_ACTIVE_CHANNELS, typename SampleT, typename CounterT, typename LevelT, typename OffsetT> void TestRange( LevelT max_level, int entropy_reduction, int num_levels[NUM_ACTIVE_CHANNELS], ///< [in] The number of boundaries (levels) for delineating histogram samples in each active channel. Implies that the number of bins for channeli is num_levels[i] - 1. LevelT* levels[NUM_ACTIVE_CHANNELS], ///< [in] The lower sample value bound (inclusive) for the lowest histogram bin in each active channel. OffsetT num_row_pixels, ///< [in] The number of multi-channel pixels per row in the region of interest OffsetT num_rows, ///< [in] The number of rows in the region of interest OffsetT row_stride_bytes) ///< [in] The number of bytes between starts of consecutive rows in the region of interest { OffsetT total_samples = num_rows * (row_stride_bytes / sizeof(SampleT)); printf("\n----------------------------\n"); printf("%s cub::DeviceHistogramRange %d pixels (%d height, %d width, %d-byte row stride), %d %d-byte %s samples (entropy reduction %d), %s counters, %d/%d channels, max sample ", (BACKEND == CDP) ? "CDP CUB" : (BACKEND == NPP) ? "NPP" : "CUB", (int) (num_row_pixels * num_rows), (int) num_rows, (int) num_row_pixels, (int) row_stride_bytes, (int) total_samples, (int) sizeof(SampleT), typeid(SampleT).name(), entropy_reduction, typeid(CounterT).name(), NUM_ACTIVE_CHANNELS, NUM_CHANNELS); std::cout << CoutCast(max_level) << "\n"; for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) { printf("Channel %d: %d bins [", channel, num_levels[channel] - 1); std::cout << levels[channel][0]; for (int level = 1; level < num_levels[channel]; ++level) std::cout << ", " << levels[channel][level]; printf("]\n"); } fflush(stdout); // Allocate and initialize host and device data typedef SampleT Foo; // rename type to quelch gcc warnings (bug?) SampleT* h_samples = new Foo[total_samples]; CounterT* h_histogram[NUM_ACTIVE_CHANNELS]; SearchTransform transform_op[NUM_ACTIVE_CHANNELS]; for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) { transform_op[channel].levels = levels[channel]; transform_op[channel].num_levels = num_levels[channel]; int bins = num_levels[channel] - 1; h_histogram[channel] = new CounterT[bins]; } Initialize( max_level, entropy_reduction, h_samples, num_levels, transform_op, h_histogram, num_row_pixels, num_rows, row_stride_bytes); // Allocate and initialize device data SampleT* d_samples = NULL; LevelT* d_levels[NUM_ACTIVE_CHANNELS]; CounterT* d_histogram[NUM_ACTIVE_CHANNELS]; CubDebugExit(g_allocator.DeviceAllocate((void**)&d_samples, sizeof(SampleT) * total_samples)); CubDebugExit(cudaMemcpy(d_samples, h_samples, sizeof(SampleT) * total_samples, cudaMemcpyHostToDevice)); for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) { CubDebugExit(g_allocator.DeviceAllocate((void**)&d_levels[channel], sizeof(LevelT) * num_levels[channel])); CubDebugExit(cudaMemcpy(d_levels[channel], levels[channel], sizeof(LevelT) * num_levels[channel], cudaMemcpyHostToDevice)); int bins = num_levels[channel] - 1; CubDebugExit(g_allocator.DeviceAllocate((void**)&d_histogram[channel], sizeof(CounterT) * bins)); CubDebugExit(cudaMemset(d_histogram[channel], 0, sizeof(CounterT) * bins)); } // Allocate CDP device arrays size_t *d_temp_storage_bytes = NULL; cudaError_t *d_cdp_error = NULL; CubDebugExit(g_allocator.DeviceAllocate((void**)&d_temp_storage_bytes, sizeof(size_t) * 1)); CubDebugExit(g_allocator.DeviceAllocate((void**)&d_cdp_error, sizeof(cudaError_t) * 1)); // Allocate temporary storage void *d_temp_storage = NULL; size_t temp_storage_bytes = 0; DispatchRange( Int2Type(), Int2Type(), Int2Type(), 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_samples, d_histogram, num_levels, d_levels, num_row_pixels, num_rows, row_stride_bytes, 0, true); // Allocate temporary storage with "canary" zones int canary_bytes = 256; char canary_token = 9; char* canary_zone = new char[canary_bytes]; memset(canary_zone, canary_token, canary_bytes); CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes + (canary_bytes * 2))); CubDebugExit(cudaMemset(d_temp_storage, canary_token, temp_storage_bytes + (canary_bytes * 2))); // Run warmup/correctness iteration DispatchRange( Int2Type(), Int2Type(), Int2Type(), 1, d_temp_storage_bytes, d_cdp_error, ((char *) d_temp_storage) + canary_bytes, temp_storage_bytes, d_samples, d_histogram, num_levels, d_levels, num_row_pixels, num_rows, row_stride_bytes, 0, true); // Check canary zones int error = CompareDeviceResults(canary_zone, (char *) d_temp_storage, canary_bytes, true, g_verbose); AssertEquals(0, error); error = CompareDeviceResults(canary_zone, ((char *) d_temp_storage) + canary_bytes + temp_storage_bytes, canary_bytes, true, g_verbose); AssertEquals(0, error); // Flush any stdout/stderr CubDebugExit(cudaPeekAtLastError()); CubDebugExit(cudaDeviceSynchronize()); fflush(stdout); fflush(stderr); // Check for correctness (and display results, if specified) for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) { int channel_error = CompareDeviceResults(h_histogram[channel], d_histogram[channel], num_levels[channel] - 1, true, g_verbose); printf("\tChannel %d %s", channel, channel_error ? "FAIL" : "PASS\n"); error |= channel_error; } // Performance GpuTimer gpu_timer; gpu_timer.Start(); DispatchRange( Int2Type(), Int2Type(), Int2Type(), g_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_samples, d_histogram, num_levels, d_levels, num_row_pixels, num_rows, row_stride_bytes, 0, false); gpu_timer.Stop(); float elapsed_millis = gpu_timer.ElapsedMillis(); // Display performance if (g_timing_iterations > 0) { float avg_millis = elapsed_millis / g_timing_iterations; float giga_rate = float(total_samples) / avg_millis / 1000.0f / 1000.0f; float giga_bandwidth = giga_rate * sizeof(SampleT); printf("\t%.3f avg ms, %.3f billion samples/s, %.3f billion bins/s, %.3f billion pixels/s, %.3f logical GB/s", avg_millis, giga_rate, giga_rate * NUM_ACTIVE_CHANNELS / NUM_CHANNELS, giga_rate / NUM_CHANNELS, giga_bandwidth); } printf("\n\n"); // Cleanup if (h_samples) delete[] h_samples; for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) { if (h_histogram[channel]) delete[] h_histogram[channel]; if (d_histogram[channel]) CubDebugExit(g_allocator.DeviceFree(d_histogram[channel])); if (d_levels[channel]) CubDebugExit(g_allocator.DeviceFree(d_levels[channel])); } if (d_samples) CubDebugExit(g_allocator.DeviceFree(d_samples)); if (d_temp_storage_bytes) CubDebugExit(g_allocator.DeviceFree(d_temp_storage_bytes)); if (d_cdp_error) CubDebugExit(g_allocator.DeviceFree(d_cdp_error)); if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage)); // Correctness asserts AssertEquals(0, error); } /** * Test histogram-even */ template < Backend BACKEND, typename SampleT, int NUM_CHANNELS, int NUM_ACTIVE_CHANNELS, typename CounterT, typename LevelT, typename OffsetT> void TestEven( OffsetT num_row_pixels, OffsetT num_rows, OffsetT row_stride_bytes, int entropy_reduction, int num_levels[NUM_ACTIVE_CHANNELS], LevelT max_level, int max_num_levels) { LevelT lower_level[NUM_ACTIVE_CHANNELS]; LevelT upper_level[NUM_ACTIVE_CHANNELS]; // Find smallest level increment int max_bins = max_num_levels - 1; LevelT min_level_increment = max_level / max_bins; // Set upper and lower levels for each channel for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) { int num_bins = num_levels[channel] - 1; lower_level[channel] = (max_level - (num_bins * min_level_increment)) / 2; upper_level[channel] = (max_level + (num_bins * min_level_increment)) / 2; } TestEven( max_level, entropy_reduction, num_levels, lower_level, upper_level, num_row_pixels, num_rows, row_stride_bytes); } /** * Test histogram-range */ template < Backend BACKEND, typename SampleT, int NUM_CHANNELS, int NUM_ACTIVE_CHANNELS, typename CounterT, typename LevelT, typename OffsetT> void TestRange( OffsetT num_row_pixels, OffsetT num_rows, OffsetT row_stride_bytes, int entropy_reduction, int num_levels[NUM_ACTIVE_CHANNELS], LevelT max_level, int max_num_levels) { // Find smallest level increment int max_bins = max_num_levels - 1; LevelT min_level_increment = max_level / max_bins; LevelT* levels[NUM_ACTIVE_CHANNELS]; for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) { levels[channel] = new LevelT[num_levels[channel]]; int num_bins = num_levels[channel] - 1; LevelT lower_level = (max_level - (num_bins * min_level_increment)) / 2; for (int level = 0; level < num_levels[channel]; ++level) levels[channel][level] = lower_level + (level * min_level_increment); } TestRange( max_level, entropy_reduction, num_levels, levels, num_row_pixels, num_rows, row_stride_bytes); for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) delete[] levels[channel]; } /** * Test different entrypoints */ template < typename SampleT, int NUM_CHANNELS, int NUM_ACTIVE_CHANNELS, typename CounterT, typename LevelT, typename OffsetT> void Test( OffsetT num_row_pixels, OffsetT num_rows, OffsetT row_stride_bytes, int entropy_reduction, int num_levels[NUM_ACTIVE_CHANNELS], LevelT max_level, int max_num_levels) { TestEven( num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, max_num_levels); TestRange( num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, max_num_levels); } /** * Test different number of levels */ template < typename SampleT, int NUM_CHANNELS, int NUM_ACTIVE_CHANNELS, typename CounterT, typename LevelT, typename OffsetT> void Test( OffsetT num_row_pixels, OffsetT num_rows, OffsetT row_stride_bytes, int entropy_reduction, LevelT max_level, int max_num_levels) { int num_levels[NUM_ACTIVE_CHANNELS]; // All the same level for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel) { num_levels[channel] = max_num_levels; } Test( num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, max_num_levels); // All different levels num_levels[0] = max_num_levels; for (int channel = 1; channel < NUM_ACTIVE_CHANNELS; ++channel) { num_levels[channel] = (num_levels[channel - 1] / 2) + 1; } Test( num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, max_num_levels); } /** * Test different entropy-levels */ template < typename SampleT, int NUM_CHANNELS, int NUM_ACTIVE_CHANNELS, typename CounterT, typename LevelT, typename OffsetT> void Test( OffsetT num_row_pixels, OffsetT num_rows, OffsetT row_stride_bytes, LevelT max_level, int max_num_levels) { Test( num_row_pixels, num_rows, row_stride_bytes, 0, max_level, max_num_levels); Test( num_row_pixels, num_rows, row_stride_bytes, -1, max_level, max_num_levels); Test( num_row_pixels, num_rows, row_stride_bytes, 5, max_level, max_num_levels); } /** * Test different row strides */ template < typename SampleT, int NUM_CHANNELS, int NUM_ACTIVE_CHANNELS, typename CounterT, typename LevelT, typename OffsetT> void Test( OffsetT num_row_pixels, OffsetT num_rows, LevelT max_level, int max_num_levels) { OffsetT row_stride_bytes = num_row_pixels * NUM_CHANNELS * sizeof(SampleT); // No padding Test( num_row_pixels, num_rows, row_stride_bytes, max_level, max_num_levels); // 13 samples padding Test( num_row_pixels, num_rows, row_stride_bytes + (13 * sizeof(SampleT)), max_level, max_num_levels); } /** * Test different problem sizes */ template < typename SampleT, int NUM_CHANNELS, int NUM_ACTIVE_CHANNELS, typename CounterT, typename LevelT, typename OffsetT> void Test( LevelT max_level, int max_num_levels) { // 0 images Test( OffsetT(1920), OffsetT(0), max_level, max_num_levels); Test( OffsetT(0), OffsetT(0), max_level, max_num_levels); // 1080 image Test( OffsetT(1920), OffsetT(1080), max_level, max_num_levels); // 720 image Test( OffsetT(1280), OffsetT(720), max_level, max_num_levels); // Sample different image sizes for (OffsetT rows = 1; rows < 1000000; rows *= 100) { for (OffsetT cols = 1; cols < (1000000 / rows); cols *= 100) { Test( cols, rows, max_level, max_num_levels); } } // Randomly select linear problem size between 1:10,000,000 unsigned int max_int = (unsigned int) -1; for (int i = 0; i < 10; ++i) { unsigned int num_items; RandomBits(num_items); num_items = (unsigned int) ((double(num_items) * double(10000000)) / double(max_int)); num_items = CUB_MAX(1, num_items); Test( OffsetT(num_items), 1, max_level, max_num_levels); } } /** * Test different channel interleavings (valid specialiation) */ template < typename SampleT, typename CounterT, typename LevelT, typename OffsetT> void TestChannels( LevelT max_level, int max_num_levels, Int2Type is_valid_tag) { Test(max_level, max_num_levels); Test(max_level, max_num_levels); Test(max_level, max_num_levels); Test(max_level, max_num_levels); } /** * Test different channel interleavings (invalid specialiation) */ template < typename SampleT, typename CounterT, typename LevelT, typename OffsetT> void TestChannels( LevelT max_level, int max_num_levels, Int2Type is_valid_tag) {} //--------------------------------------------------------------------- // Main //--------------------------------------------------------------------- /** * Main */ int main(int argc, char** argv) { int num_row_pixels = -1; int entropy_reduction = 0; int num_rows = 1; // Initialize command line CommandLineArgs args(argc, argv); g_verbose = args.CheckCmdLineFlag("v"); g_verbose_input = args.CheckCmdLineFlag("v2"); args.GetCmdLineArgument("n", num_row_pixels); int row_stride_pixels = num_row_pixels; args.GetCmdLineArgument("rows", num_rows); args.GetCmdLineArgument("stride", row_stride_pixels); args.GetCmdLineArgument("i", g_timing_iterations); args.GetCmdLineArgument("repeat", g_repeat); args.GetCmdLineArgument("entropy", entropy_reduction); bool compare_npp = args.CheckCmdLineFlag("npp"); // Print usage if (args.CheckCmdLineFlag("help")) { printf("%s " "[--n= " "[--rows= " "[--stride= " "[--i= " "[--device=] " "[--repeat=]" "[--entropy=]" "[--v] " "[--cdp]" "[--npp]" "\n", argv[0]); exit(0); } // Initialize device CubDebugExit(args.DeviceInit()); // Get ptx version int ptx_version; CubDebugExit(PtxVersion(ptx_version)); if (num_row_pixels < 0) { num_row_pixels = 1920 * 1080; row_stride_pixels = num_row_pixels; } #if defined(QUICKER_TEST) // Compile/run quick tests { // HistogramEven: unsigned char 256 bins typedef unsigned char SampleT; typedef int LevelT; LevelT max_level = 256; int num_levels[1] = {257}; int row_stride_bytes = sizeof(SampleT) * row_stride_pixels * 1; TestEven(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); if (compare_npp) TestEven(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); } #elif defined(QUICK_TEST) // Compile/run quick tests { // HistogramEven: unsigned char 256 bins typedef unsigned char SampleT; typedef int LevelT; LevelT max_level = 256; int num_levels[1] = {257}; int row_stride_bytes = sizeof(SampleT) * row_stride_pixels * 1; TestEven(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); if (compare_npp) TestEven(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); } { // HistogramEven: 4/4 multichannel Unsigned char 256 bins typedef unsigned char SampleT; typedef int LevelT; LevelT max_level = 256; int num_levels[4] = {257, 257, 257, 257}; int row_stride_bytes = sizeof(SampleT) * row_stride_pixels * 4; TestEven(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); } { // HistogramEven: 3/4 multichannel Unsigned char 256 bins typedef unsigned char SampleT; typedef int LevelT; LevelT max_level = 256; int num_levels[3] = {257, 257, 257}; int row_stride_bytes = sizeof(SampleT) * row_stride_pixels * 4; TestEven(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); if (compare_npp) TestEven(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); } { // HistogramEven: short [0,1024] 256 bins typedef unsigned short SampleT; typedef unsigned short LevelT; LevelT max_level = 1024; int num_levels[1] = {257}; int row_stride_bytes = sizeof(SampleT) * row_stride_pixels * 1; TestEven(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); } { // HistogramEven: float [0,1.0] 256 bins typedef float SampleT; typedef float LevelT; LevelT max_level = 1.0; int num_levels[1] = {257}; int row_stride_bytes = sizeof(SampleT) * row_stride_pixels * 1; TestEven(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); } { // HistogramEven: 3/4 multichannel float [0,1.0] 256 bins typedef float SampleT; typedef float LevelT; LevelT max_level = 1.0; int num_levels[3] = {257, 257, 257}; int row_stride_bytes = sizeof(SampleT) * row_stride_pixels * 4; TestEven(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); } { // HistogramRange: signed char 256 bins typedef signed char SampleT; typedef int LevelT; LevelT max_level = 256; int num_levels[1] = {257}; int row_stride_bytes = sizeof(SampleT) * row_stride_pixels * 1; TestRange(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); } { // HistogramRange: 3/4 channel, unsigned char, varied bins (256, 128, 64) typedef unsigned char SampleT; typedef int LevelT; LevelT max_level = 256; int num_levels[3] = {257, 129, 65}; int row_stride_bytes = sizeof(SampleT) * row_stride_pixels * 4; TestRange(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); } if (ptx_version > 120) // Don't check doubles on PTX120 or below because they're down-converted { // HistogramEven: double [0,1.0] 64 bins typedef double SampleT; typedef double LevelT; LevelT max_level = 1.0; int num_levels[1] = {65}; int row_stride_bytes = sizeof(SampleT) * row_stride_pixels * 1; TestEven(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); } { // HistogramEven: short [0,1024] 512 bins typedef unsigned short SampleT; typedef unsigned short LevelT; LevelT max_level = 1024; int num_levels[1] = {513}; int row_stride_bytes = sizeof(SampleT) * row_stride_pixels * 1; TestEven(num_row_pixels, num_rows, row_stride_bytes, entropy_reduction, num_levels, max_level, num_levels[0]); } #else // Compile/run thorough tests for (int i = 0; i <= g_repeat; ++i) { TestChannels (256, 256 + 1, Int2Type()); TestChannels (256, 256 + 1, Int2Type()); TestChannels (128, 128 + 1, Int2Type()); TestChannels (8192, 8192 + 1, Int2Type()); TestChannels (1.0, 256 + 1, Int2Type()); // Test down-conversion of size_t offsets to int TestChannels (256, 256 + 1, Int2Type<(sizeof(size_t) != sizeof(int))>()); } #endif return 0; }