/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2016, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /****************************************************************************** * Test of DeviceReduce utilities ******************************************************************************/ // Ensure printing of CUDA runtime errors to console #define CUB_STDERR #include #include #include #include #include #include #include #include #include #include #include "test_util.h" using namespace cub; //--------------------------------------------------------------------- // Globals, constants and typedefs //--------------------------------------------------------------------- int g_ptx_version; int g_sm_count; bool g_verbose = false; bool g_verbose_input = false; int g_timing_iterations = 0; int g_repeat = 0; CachingDeviceAllocator g_allocator(true); // Dispatch types enum Backend { CUB, // CUB method CUB_SEGMENTED, // CUB segmented method CUB_CDP, // GPU-based (dynamic parallelism) dispatch to CUB method THRUST, // Thrust method }; // Custom max functor struct CustomMax { /// Boolean max operator, returns (a > b) ? a : b template __host__ __device__ __forceinline__ OutputT operator()(const OutputT &a, const OutputT &b) { return CUB_MAX(a, b); } }; //--------------------------------------------------------------------- // Dispatch to different CUB DeviceReduce entrypoints //--------------------------------------------------------------------- /** * Dispatch to reduce entrypoint (custom-max) */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, ReductionOpT reduction_op, cudaStream_t stream, bool debug_synchronous) { typedef typename std::iterator_traits::value_type InputT; // The output value type typedef typename If<(Equals::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ? typename std::iterator_traits::value_type, // ... then the input iterator's value type, typename std::iterator_traits::value_type>::Type OutputT; // ... else the output iterator's value type // Max-identity OutputT identity = Traits::Lowest(); // replace with std::numeric_limits::lowest() when C++ support is more prevalent // Invoke kernel to device reduction directly cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceReduce::Reduce(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, reduction_op, identity, stream, debug_synchronous); } return error; } /** * Dispatch to sum entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, cub::Sum reduction_op, cudaStream_t stream, bool debug_synchronous) { // Invoke kernel to device reduction directly cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceReduce::Sum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, stream, debug_synchronous); } return error; } /** * Dispatch to min entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, cub::Min reduction_op, cudaStream_t stream, bool debug_synchronous) { // Invoke kernel to device reduction directly cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceReduce::Min(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, stream, debug_synchronous); } return error; } /** * Dispatch to max entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, cub::Max reduction_op, cudaStream_t stream, bool debug_synchronous) { // Invoke kernel to device reduction directly cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceReduce::Max(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, stream, debug_synchronous); } return error; } /** * Dispatch to argmin entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, cub::ArgMin reduction_op, cudaStream_t stream, bool debug_synchronous) { // Invoke kernel to device reduction directly cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceReduce::ArgMin(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, stream, debug_synchronous); } return error; } /** * Dispatch to argmax entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, cub::ArgMax reduction_op, cudaStream_t stream, bool debug_synchronous) { // Invoke kernel to device reduction directly cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceReduce::ArgMax(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, stream, debug_synchronous); } return error; } //--------------------------------------------------------------------- // Dispatch to different CUB DeviceSegmentedReduce entrypoints //--------------------------------------------------------------------- /** * Dispatch to reduce entrypoint (custom-max) */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, ReductionOpT reduction_op, cudaStream_t stream, bool debug_synchronous) { // The input value type typedef typename std::iterator_traits::value_type InputT; // The output value type typedef typename If<(Equals::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ? typename std::iterator_traits::value_type, // ... then the input iterator's value type, typename std::iterator_traits::value_type>::Type OutputT; // ... else the output iterator's value type // Max-identity OutputT identity = Traits::Lowest(); // replace with std::numeric_limits::lowest() when C++ support is more prevalent // Invoke kernel to device reduction directly cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceSegmentedReduce::Reduce(d_temp_storage, temp_storage_bytes, d_in, d_out, max_segments, d_segment_offsets, d_segment_offsets + 1, reduction_op, identity, stream, debug_synchronous); } return error; } /** * Dispatch to sum entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, cub::Sum reduction_op, cudaStream_t stream, bool debug_synchronous) { // Invoke kernel to device reduction directly cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceSegmentedReduce::Sum(d_temp_storage, temp_storage_bytes, d_in, d_out, max_segments, d_segment_offsets, d_segment_offsets + 1, stream, debug_synchronous); } return error; } /** * Dispatch to min entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, cub::Min reduction_op, cudaStream_t stream, bool debug_synchronous) { // Invoke kernel to device reduction directly cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceSegmentedReduce::Min(d_temp_storage, temp_storage_bytes, d_in, d_out, max_segments, d_segment_offsets, d_segment_offsets + 1, stream, debug_synchronous); } return error; } /** * Dispatch to max entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, cub::Max reduction_op, cudaStream_t stream, bool debug_synchronous) { // Invoke kernel to device reduction directly cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceSegmentedReduce::Max(d_temp_storage, temp_storage_bytes, d_in, d_out, max_segments, d_segment_offsets, d_segment_offsets + 1, stream, debug_synchronous); } return error; } /** * Dispatch to argmin entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, cub::ArgMin reduction_op, cudaStream_t stream, bool debug_synchronous) { // Invoke kernel to device reduction directly cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceSegmentedReduce::ArgMin(d_temp_storage, temp_storage_bytes, d_in, d_out, max_segments, d_segment_offsets, d_segment_offsets + 1, stream, debug_synchronous); } return error; } /** * Dispatch to argmax entrypoint */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, cub::ArgMax reduction_op, cudaStream_t stream, bool debug_synchronous) { // Invoke kernel to device reduction directly cudaError_t error = cudaSuccess; for (int i = 0; i < timing_timing_iterations; ++i) { error = DeviceSegmentedReduce::ArgMax(d_temp_storage, temp_storage_bytes, d_in, d_out, max_segments, d_segment_offsets, d_segment_offsets + 1, stream, debug_synchronous); } return error; } //--------------------------------------------------------------------- // Dispatch to different Thrust entrypoints //--------------------------------------------------------------------- /** * Dispatch to reduction entrypoint (min or max specialization) */ template cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, ReductionOpT reduction_op, cudaStream_t stream, bool debug_synchronous) { // The output value type typedef typename If<(Equals::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ? typename std::iterator_traits::value_type, // ... then the input iterator's value type, typename std::iterator_traits::value_type>::Type OutputT; // ... else the output iterator's value type if (d_temp_storage == 0) { temp_storage_bytes = 1; } else { OutputT init; CubDebugExit(cudaMemcpy(&init, d_in + 0, sizeof(OutputT), cudaMemcpyDeviceToHost)); thrust::device_ptr d_in_wrapper(d_in); OutputT retval; for (int i = 0; i < timing_timing_iterations; ++i) { retval = thrust::reduce(d_in_wrapper, d_in_wrapper + num_items, init, reduction_op); } if (!Equals >::VALUE) CubDebugExit(cudaMemcpy(d_out, &retval, sizeof(OutputT), cudaMemcpyHostToDevice)); } return cudaSuccess; } /** * Dispatch to reduction entrypoint (sum specialization) */ template cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, Sum reduction_op, cudaStream_t stream, bool debug_synchronous) { // The output value type typedef typename If<(Equals::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ? typename std::iterator_traits::value_type, // ... then the input iterator's value type, typename std::iterator_traits::value_type>::Type OutputT; // ... else the output iterator's value type if (d_temp_storage == 0) { temp_storage_bytes = 1; } else { thrust::device_ptr d_in_wrapper(d_in); OutputT retval; for (int i = 0; i < timing_timing_iterations; ++i) { retval = thrust::reduce(d_in_wrapper, d_in_wrapper + num_items); } if (!Equals >::VALUE) CubDebugExit(cudaMemcpy(d_out, &retval, sizeof(OutputT), cudaMemcpyHostToDevice)); } return cudaSuccess; } //--------------------------------------------------------------------- // CUDA nested-parallelism test kernel //--------------------------------------------------------------------- /** * Simple wrapper kernel to invoke DeviceReduce */ template < typename InputIteratorT, typename OutputIteratorT, typename ReductionOpT> __global__ void CnpDispatchKernel( int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, ReductionOpT reduction_op, bool debug_synchronous) { #ifndef CUB_CDP *d_cdp_error = cudaErrorNotSupported; #else *d_cdp_error = Dispatch(Int2Type(), timing_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, max_segments, d_segment_offsets, reduction_op, 0, debug_synchronous); *d_temp_storage_bytes = temp_storage_bytes; #endif } /** * Dispatch to CUB_CDP kernel */ template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Dispatch( Int2Type dispatch_to, int timing_timing_iterations, size_t *d_temp_storage_bytes, cudaError_t *d_cdp_error, void* d_temp_storage, size_t& temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, int num_items, int max_segments, int *d_segment_offsets, ReductionOpT reduction_op, cudaStream_t stream, bool debug_synchronous) { // Invoke kernel to invoke device-side dispatch CnpDispatchKernel<<<1,1>>>(timing_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, max_segments, d_segment_offsets, reduction_op, debug_synchronous); // Copy out temp_storage_bytes CubDebugExit(cudaMemcpy(&temp_storage_bytes, d_temp_storage_bytes, sizeof(size_t) * 1, cudaMemcpyDeviceToHost)); // Copy out error cudaError_t retval; CubDebugExit(cudaMemcpy(&retval, d_cdp_error, sizeof(cudaError_t) * 1, cudaMemcpyDeviceToHost)); return retval; } //--------------------------------------------------------------------- // Problem generation //--------------------------------------------------------------------- /// Initialize problem template void Initialize( GenMode gen_mode, InputT *h_in, int num_items) { for (int i = 0; i < num_items; ++i) { InitValue(gen_mode, h_in[i], i); } if (g_verbose_input) { printf("Input:\n"); DisplayResults(h_in, num_items); printf("\n\n"); } } /// Solve problem (max/custom-max functor) template struct Solution { typedef _OutputT OutputT; template static void Solve(HostInputIteratorT h_in, OutputT *h_reference, int num_segments, int *h_segment_offsets, ReductionOpT reduction_op) { for (int i = 0; i < num_segments; ++i) { OutputT aggregate = Traits::Lowest(); // replace with std::numeric_limits::lowest() when C++ support is more prevalent for (int j = h_segment_offsets[i]; j < h_segment_offsets[i + 1]; ++j) aggregate = reduction_op(aggregate, OutputT(h_in[j])); h_reference[i] = aggregate; } } }; /// Solve problem (min functor) template struct Solution { typedef _OutputT OutputT; template static void Solve(HostInputIteratorT h_in, OutputT *h_reference, int num_segments, int *h_segment_offsets, cub::Min reduction_op) { for (int i = 0; i < num_segments; ++i) { OutputT aggregate = Traits::Max(); // replace with std::numeric_limits::max() when C++ support is more prevalent for (int j = h_segment_offsets[i]; j < h_segment_offsets[i + 1]; ++j) aggregate = reduction_op(aggregate, OutputT(h_in[j])); h_reference[i] = aggregate; } } }; /// Solve problem (sum functor) template struct Solution { typedef _OutputT OutputT; template static void Solve(HostInputIteratorT h_in, OutputT *h_reference, int num_segments, int *h_segment_offsets, cub::Sum reduction_op) { for (int i = 0; i < num_segments; ++i) { OutputT aggregate; InitValue(INTEGER_SEED, aggregate, 0); for (int j = h_segment_offsets[i]; j < h_segment_offsets[i + 1]; ++j) aggregate = reduction_op(aggregate, OutputT(h_in[j])); h_reference[i] = aggregate; } } }; /// Solve problem (argmin functor) template struct Solution { typedef KeyValuePair OutputT; template static void Solve(HostInputIteratorT h_in, OutputT *h_reference, int num_segments, int *h_segment_offsets, cub::ArgMin reduction_op) { for (int i = 0; i < num_segments; ++i) { OutputT aggregate(1, Traits::Max()); // replace with std::numeric_limits::max() when C++ support is more prevalent for (int j = h_segment_offsets[i]; j < h_segment_offsets[i + 1]; ++j) { OutputT item(j - h_segment_offsets[i], OutputValueT(h_in[j])); aggregate = reduction_op(aggregate, item); } h_reference[i] = aggregate; } } }; /// Solve problem (argmax functor) template struct Solution { typedef KeyValuePair OutputT; template static void Solve(HostInputIteratorT h_in, OutputT *h_reference, int num_segments, int *h_segment_offsets, cub::ArgMax reduction_op) { for (int i = 0; i < num_segments; ++i) { OutputT aggregate(1, Traits::Lowest()); // replace with std::numeric_limits::lowest() when C++ support is more prevalent for (int j = h_segment_offsets[i]; j < h_segment_offsets[i + 1]; ++j) { OutputT item(j - h_segment_offsets[i], OutputValueT(h_in[j])); aggregate = reduction_op(aggregate, item); } h_reference[i] = aggregate; } } }; //--------------------------------------------------------------------- // Problem generation //--------------------------------------------------------------------- /// Test DeviceReduce for a given problem input template < typename BackendT, typename DeviceInputIteratorT, typename HostReferenceIteratorT, typename ReductionOpT> void Test( BackendT backend, DeviceInputIteratorT d_in, int num_items, int num_segments, int *d_segment_offsets, ReductionOpT reduction_op, HostReferenceIteratorT h_reference) { // Input and output data types typedef typename std::iterator_traits::value_type InputT; typedef typename std::iterator_traits::value_type OutputT; // Allocate CUB_CDP device arrays for temp storage size and error OutputT *d_out = NULL; size_t *d_temp_storage_bytes = NULL; cudaError_t *d_cdp_error = NULL; CubDebugExit(g_allocator.DeviceAllocate((void**)&d_out, sizeof(OutputT) * num_segments)); CubDebugExit(g_allocator.DeviceAllocate((void**)&d_temp_storage_bytes, sizeof(size_t) * 1)); CubDebugExit(g_allocator.DeviceAllocate((void**)&d_cdp_error, sizeof(cudaError_t) * 1)); // Inquire temp device storage void *d_temp_storage = NULL; size_t temp_storage_bytes = 0; CubDebugExit(Dispatch(backend, 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, num_segments, d_segment_offsets, reduction_op, 0, true)); // Allocate temp device storage CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes)); // Clear device output CubDebugExit(cudaMemset(d_out, 0, sizeof(OutputT) * num_segments)); // Run once with discard iterator DiscardOutputIterator discard_itr; CubDebugExit(Dispatch(backend, 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_in, discard_itr, num_items, num_segments, d_segment_offsets, reduction_op, 0, true)); // Run warmup/correctness iteration CubDebugExit(Dispatch(backend, 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, num_segments, d_segment_offsets, reduction_op, 0, true)); // Check for correctness (and display results, if specified) int compare = CompareDeviceResults(h_reference, d_out, num_segments, g_verbose, g_verbose); printf("\t%s", compare ? "FAIL" : "PASS"); // Flush any stdout/stderr fflush(stdout); fflush(stderr); // Performance if (g_timing_iterations > 0) { GpuTimer gpu_timer; gpu_timer.Start(); CubDebugExit(Dispatch(backend, g_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, num_segments, d_segment_offsets, reduction_op, 0, false)); gpu_timer.Stop(); float elapsed_millis = gpu_timer.ElapsedMillis(); // Display performance float avg_millis = elapsed_millis / g_timing_iterations; float giga_rate = float(num_items) / avg_millis / 1000.0f / 1000.0f; float giga_bandwidth = giga_rate * sizeof(InputT); printf(", %.3f avg ms, %.3f billion items/s, %.3f logical GB/s", avg_millis, giga_rate, giga_bandwidth); } if (d_out) CubDebugExit(g_allocator.DeviceFree(d_out)); if (d_temp_storage_bytes) CubDebugExit(g_allocator.DeviceFree(d_temp_storage_bytes)); if (d_cdp_error) CubDebugExit(g_allocator.DeviceFree(d_cdp_error)); if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage)); // Correctness asserts AssertEquals(0, compare); } /// Test DeviceReduce template < Backend BACKEND, typename OutputValueT, typename HostInputIteratorT, typename DeviceInputIteratorT, typename ReductionOpT> void SolveAndTest( HostInputIteratorT h_in, DeviceInputIteratorT d_in, int num_items, int num_segments, int *h_segment_offsets, int *d_segment_offsets, ReductionOpT reduction_op) { typedef typename std::iterator_traits::value_type InputValueT; typedef Solution SolutionT; typedef typename SolutionT::OutputT OutputT; printf("\n\n%s cub::DeviceReduce<%s> %d items (%s), %d segments\n", (BACKEND == CUB_CDP) ? "CUB_CDP" : (BACKEND == THRUST) ? "Thrust" : (BACKEND == CUB_SEGMENTED) ? "CUB_SEGMENTED" : "CUB", typeid(ReductionOpT).name(), num_items, typeid(HostInputIteratorT).name(), num_segments); fflush(stdout); // Allocate and solve solution OutputT *h_reference = new OutputT[num_segments]; SolutionT::Solve(h_in, h_reference, num_segments, h_segment_offsets, reduction_op); // Run test Test(Int2Type(), d_in, num_items, num_segments, d_segment_offsets, reduction_op, h_reference); // Cleanup if (h_reference) delete[] h_reference; } /// Test specific problem type template < Backend BACKEND, typename InputT, typename OutputT, typename ReductionOpT> void TestProblem( int num_items, int num_segments, GenMode gen_mode, ReductionOpT reduction_op) { printf("\n\nInitializing %d %s->%s (gen mode %d)... ", num_items, typeid(InputT).name(), typeid(OutputT).name(), gen_mode); fflush(stdout); fflush(stdout); // Initialize value data InputT* h_in = new InputT[num_items]; Initialize(gen_mode, h_in, num_items); // Initialize segment data int *h_segment_offsets = new int[num_segments + 1]; InitializeSegments(num_items, num_segments, h_segment_offsets, g_verbose_input); // Initialize device data int *d_segment_offsets = NULL; InputT *d_in = NULL; CubDebugExit(g_allocator.DeviceAllocate((void**)&d_in, sizeof(InputT) * num_items)); CubDebugExit(g_allocator.DeviceAllocate((void**)&d_segment_offsets, sizeof(int) * (num_segments + 1))); CubDebugExit(cudaMemcpy(d_in, h_in, sizeof(InputT) * num_items, cudaMemcpyHostToDevice)); CubDebugExit(cudaMemcpy(d_segment_offsets, h_segment_offsets, sizeof(int) * (num_segments + 1), cudaMemcpyHostToDevice)); SolveAndTest(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, reduction_op); if (h_segment_offsets) delete[] h_segment_offsets; if (d_segment_offsets) CubDebugExit(g_allocator.DeviceFree(d_segment_offsets)); if (h_in) delete[] h_in; if (d_in) CubDebugExit(g_allocator.DeviceFree(d_in)); } /// Test different operators template < Backend BACKEND, typename OutputT, typename HostInputIteratorT, typename DeviceInputIteratorT> void TestByOp( HostInputIteratorT h_in, DeviceInputIteratorT d_in, int num_items, int num_segments, int *h_segment_offsets, int *d_segment_offsets) { SolveAndTest(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, CustomMax()); SolveAndTest(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, Sum()); SolveAndTest(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, Min()); SolveAndTest(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, ArgMin()); SolveAndTest(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, Max()); SolveAndTest(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, ArgMax()); } /// Test different backends template < typename InputT, typename OutputT> void TestByBackend( int num_items, int max_segments, GenMode gen_mode) { // Initialize host data printf("\n\nInitializing %d %s -> %s (gen mode %d)... ", num_items, typeid(InputT).name(), typeid(OutputT).name(), gen_mode); fflush(stdout); InputT *h_in = new InputT[num_items]; int *h_segment_offsets = new int[max_segments + 1]; Initialize(gen_mode, h_in, num_items); // Initialize device data InputT *d_in = NULL; int *d_segment_offsets = NULL; CubDebugExit(g_allocator.DeviceAllocate((void**)&d_in, sizeof(InputT) * num_items)); CubDebugExit(g_allocator.DeviceAllocate((void**)&d_segment_offsets, sizeof(int) * (max_segments + 1))); CubDebugExit(cudaMemcpy(d_in, h_in, sizeof(InputT) * num_items, cudaMemcpyHostToDevice)); // // Test single-segment implementations // InitializeSegments(num_items, 1, h_segment_offsets, g_verbose_input); // Page-aligned-input tests TestByOp(h_in, d_in, num_items, 1, h_segment_offsets, NULL); // Host-dispatch #ifdef CUB_CDP TestByOp(h_in, d_in, num_items, 1, h_segment_offsets, NULL); // Device-dispatch #endif // Non-page-aligned-input tests if (num_items > 1) { InitializeSegments(num_items - 1, 1, h_segment_offsets, g_verbose_input); TestByOp(h_in + 1, d_in + 1, num_items - 1, 1, h_segment_offsets, NULL); } // // Test segmented implementation // // Right now we assign a single thread block to each segment, so lets keep it to under 128K items per segment int max_items_per_segment = 128000; for (int num_segments = (num_items + max_items_per_segment - 1) / max_items_per_segment; num_segments < max_segments; num_segments = (num_segments * 32) + 1) { InitializeSegments(num_items, num_segments, h_segment_offsets, g_verbose_input); CubDebugExit(cudaMemcpy(d_segment_offsets, h_segment_offsets, sizeof(int) * (num_segments + 1), cudaMemcpyHostToDevice)); TestByOp(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets); } if (h_in) delete[] h_in; if (h_segment_offsets) delete[] h_segment_offsets; if (d_in) CubDebugExit(g_allocator.DeviceFree(d_in)); if (d_segment_offsets) CubDebugExit(g_allocator.DeviceFree(d_segment_offsets)); } /// Test different input-generation modes template < typename InputT, typename OutputT> void TestByGenMode( int num_items, int max_segments) { // // Test pointer support using different input-generation modes // TestByBackend(num_items, max_segments, UNIFORM); TestByBackend(num_items, max_segments, INTEGER_SEED); TestByBackend(num_items, max_segments, RANDOM); // // Test iterator support using a constant-iterator and SUM // InputT val; InitValue(UNIFORM, val, 0); ConstantInputIterator h_in(val); int *h_segment_offsets = new int[1 + 1]; InitializeSegments(num_items, 1, h_segment_offsets, g_verbose_input); SolveAndTest(h_in, h_in, num_items, 1, h_segment_offsets, NULL, Sum()); #ifdef CUB_CDP SolveAndTest(h_in, h_in, num_items, 1, h_segment_offsets, NULL, Sum()); #endif if (h_segment_offsets) delete[] h_segment_offsets; } /// Test different problem sizes template < typename InputT, typename OutputT> struct TestBySize { int max_items; int max_segments; TestBySize(int max_items, int max_segments) : max_items(max_items), max_segments(max_segments) {} template cudaError_t Invoke() { // // Black-box testing on all backends // // Test 0, 1, many TestByGenMode(0, max_segments); TestByGenMode(1, max_segments); TestByGenMode(max_items, max_segments); // Test random problem sizes from a log-distribution [8, max_items-ish) int num_iterations = 8; double max_exp = log(double(max_items)) / log(double(2.0)); for (int i = 0; i < num_iterations; ++i) { int num_items = (int) pow(2.0, RandomValue(max_exp - 3.0) + 3.0); TestByGenMode(num_items, max_segments); } // // White-box testing of single-segment problems around specific sizes // // Tile-boundaries: multiple blocks, one tile per block int tile_size = ActivePolicyT::ReducePolicy::BLOCK_THREADS * ActivePolicyT::ReducePolicy::ITEMS_PER_THREAD; TestProblem(tile_size * 4, 1, RANDOM, Sum()); TestProblem(tile_size * 4 + 1, 1, RANDOM, Sum()); TestProblem(tile_size * 4 - 1, 1, RANDOM, Sum()); // Tile-boundaries: multiple blocks, multiple tiles per block int sm_occupancy = 32; int occupancy = tile_size * sm_occupancy * g_sm_count; TestProblem(occupancy, 1, RANDOM, Sum()); TestProblem(occupancy + 1, 1, RANDOM, Sum()); TestProblem(occupancy - 1, 1, RANDOM, Sum()); return cudaSuccess; } }; /// Test problem type template < typename InputT, typename OutputT> void TestType( int max_items, int max_segments) { typedef typename DeviceReducePolicy::MaxPolicy MaxPolicyT; TestBySize dispatch(max_items, max_segments); MaxPolicyT::Invoke(g_ptx_version, dispatch); } //--------------------------------------------------------------------- // Main //--------------------------------------------------------------------- /** * Main */ int main(int argc, char** argv) { int max_items = 27000000; int max_segments = 34000; // Initialize command line CommandLineArgs args(argc, argv); g_verbose = args.CheckCmdLineFlag("v"); g_verbose_input = args.CheckCmdLineFlag("v2"); args.GetCmdLineArgument("n", max_items); args.GetCmdLineArgument("s", max_segments); args.GetCmdLineArgument("i", g_timing_iterations); args.GetCmdLineArgument("repeat", g_repeat); // Print usage if (args.CheckCmdLineFlag("help")) { printf("%s " "[--n= " "[--s= " "[--i= " "[--device=] " "[--repeat=]" "[--v] " "[--cdp]" "\n", argv[0]); exit(0); } // Initialize device CubDebugExit(args.DeviceInit()); // Get ptx version CubDebugExit(PtxVersion(g_ptx_version)); // Get SM count g_sm_count = args.deviceProp.multiProcessorCount; std::numeric_limits::max(); #ifdef QUICKER_TEST // Compile/run basic test TestProblem( max_items, 1, RANDOM, Sum()); TestProblem( max_items, 1, RANDOM, Sum()); TestProblem( max_items, 1, RANDOM, ArgMax()); TestProblem( max_items, 1, RANDOM, Sum()); TestProblem(max_items, max_segments, RANDOM, Sum()); #elif defined(QUICK_TEST) // Compile/run quick comparison tests TestProblem( max_items * 4, 1, UNIFORM, Sum()); TestProblem( max_items * 4, 1, UNIFORM, Sum()); printf("\n----------------------------\n"); TestProblem( max_items * 2, 1, UNIFORM, Sum()); TestProblem( max_items * 2, 1, UNIFORM, Sum()); printf("\n----------------------------\n"); TestProblem( max_items, 1, UNIFORM, Sum()); TestProblem( max_items, 1, UNIFORM, Sum()); printf("\n----------------------------\n"); TestProblem( max_items / 2, 1, UNIFORM, Sum()); TestProblem( max_items / 2, 1, UNIFORM, Sum()); printf("\n----------------------------\n"); TestProblem( max_items / 4, 1, UNIFORM, Max()); TestProblem( max_items / 4, 1, UNIFORM, Max()); #else // Compile/run thorough tests for (int i = 0; i <= g_repeat; ++i) { // Test different input types TestType(max_items, max_segments); TestType(max_items, max_segments); TestType(max_items, max_segments); TestType(max_items, max_segments); TestType(max_items, max_segments); TestType(max_items, max_segments); TestType(max_items, max_segments); TestType(max_items, max_segments); TestType(max_items, max_segments); TestType(max_items, max_segments); TestType(max_items, max_segments); TestType(max_items, max_segments); TestType(max_items, max_segments); } #endif printf("\n"); return 0; }