import xgboost as xgb import numpy as np from sklearn.datasets import fetch_covtype from sklearn.model_selection import train_test_split import time # Fetch dataset using sklearn cov = fetch_covtype() X = cov.data y = cov.target # Create 0.75/0.25 train/test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, train_size=0.75, random_state=42) # Specify sufficient boosting iterations to reach a minimum num_round = 3000 # Leave most parameters as default param = {'objective': 'multi:softmax', # Specify multiclass classification 'num_class': 8, # Number of possible output classes 'tree_method': 'gpu_hist' # Use GPU accelerated algorithm } # Convert input data from numpy to XGBoost format dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) gpu_res = {} # Store accuracy result tmp = time.time() # Train model xgb.train(param, dtrain, num_round, evals=[(dtest, 'test')], evals_result=gpu_res) print("GPU Training Time: %s seconds" % (str(time.time() - tmp))) # Repeat for CPU algorithm tmp = time.time() param['tree_method'] = 'hist' cpu_res = {} xgb.train(param, dtrain, num_round, evals=[(dtest, 'test')], evals_result=cpu_res) print("CPU Training Time: %s seconds" % (str(time.time() - tmp)))