## # This script demonstrate how to access the eval metrics in xgboost ## import xgboost as xgb dtrain = xgb.DMatrix('../data/agaricus.txt.train', silent=True) dtest = xgb.DMatrix('../data/agaricus.txt.test', silent=True) param = [('max_depth', 2), ('objective', 'binary:logistic'), ('eval_metric', 'logloss'), ('eval_metric', 'error')] num_round = 2 watchlist = [(dtest,'eval'), (dtrain,'train')] evals_result = {} bst = xgb.train(param, dtrain, num_round, watchlist, evals_result=evals_result) print('Access logloss metric directly from evals_result:') print(evals_result['eval']['logloss']) print('') print('Access metrics through a loop:') for e_name, e_mtrs in evals_result.items(): print('- {}'.format(e_name)) for e_mtr_name, e_mtr_vals in e_mtrs.items(): print(' - {}'.format(e_mtr_name)) print(' - {}'.format(e_mtr_vals)) print('') print('Access complete dictionary:') print(evals_result)