#!/usr/bin/python import xgboost as xgb ## # this script demonstrate how to fit generalized linear model in xgboost # basically, we are using linear model, instead of tree for our boosters ## dtrain = xgb.DMatrix('../data/agaricus.txt.train') dtest = xgb.DMatrix('../data/agaricus.txt.test') # change booster to gblinear, so that we are fitting a linear model # alpha is the L1 regularizer # lambda is the L2 regularizer # you can also set lambda_bias which is L2 regularizer on the bias term param = {'silent':1, 'objective':'binary:logistic', 'booster':'gblinear', 'alpha': 0.0001, 'lambda': 1} # normally, you do not need to set eta (step_size) # XGBoost uses a parallel coordinate descent algorithm (shotgun), # there could be affection on convergence with parallelization on certain cases # setting eta to be smaller value, e.g 0.5 can make the optimization more stable # param['eta'] = 1 ## # the rest of settings are the same ## watchlist = [(dtest, 'eval'), (dtrain, 'train')] num_round = 4 bst = xgb.train(param, dtrain, num_round, watchlist) preds = bst.predict(dtest) labels = dtest.get_label() print('error=%f' % (sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds))))