## # This script demonstrate how to access the xgboost eval metrics by using sklearn ## import xgboost as xgb import numpy as np from sklearn.datasets import make_hastie_10_2 X, y = make_hastie_10_2(n_samples=2000, random_state=42) # Map labels from {-1, 1} to {0, 1} labels, y = np.unique(y, return_inverse=True) X_train, X_test = X[:1600], X[1600:] y_train, y_test = y[:1600], y[1600:] param_dist = {'objective':'binary:logistic', 'n_estimators':2} clf = xgb.XGBModel(**param_dist) # Or you can use: clf = xgb.XGBClassifier(**param_dist) clf.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], eval_metric='logloss', verbose=True) # Load evals result by calling the evals_result() function evals_result = clf.evals_result() print('Access logloss metric directly from validation_0:') print(evals_result['validation_0']['logloss']) print('') print('Access metrics through a loop:') for e_name, e_mtrs in evals_result.items(): print('- {}'.format(e_name)) for e_mtr_name, e_mtr_vals in e_mtrs.items(): print(' - {}'.format(e_mtr_name)) print(' - {}'.format(e_mtr_vals)) print('') print('Access complete dict:') print(evals_result)