#!/usr/bin/python import xgboost as xgb from xgboost import DMatrix from sklearn.datasets import load_svmlight_file # This script demonstrate how to do ranking with xgboost.train x_train, y_train = load_svmlight_file("mq2008.train") x_valid, y_valid = load_svmlight_file("mq2008.vali") x_test, y_test = load_svmlight_file("mq2008.test") group_train = [] with open("mq2008.train.group", "r") as f: data = f.readlines() for line in data: group_train.append(int(line.split("\n")[0])) group_valid = [] with open("mq2008.vali.group", "r") as f: data = f.readlines() for line in data: group_valid.append(int(line.split("\n")[0])) group_test = [] with open("mq2008.test.group", "r") as f: data = f.readlines() for line in data: group_test.append(int(line.split("\n")[0])) train_dmatrix = DMatrix(x_train, y_train) valid_dmatrix = DMatrix(x_valid, y_valid) test_dmatrix = DMatrix(x_test) train_dmatrix.set_group(group_train) valid_dmatrix.set_group(group_valid) params = {'objective': 'rank:pairwise', 'eta': 0.1, 'gamma': 1.0, 'min_child_weight': 0.1, 'max_depth': 6} xgb_model = xgb.train(params, train_dmatrix, num_boost_round=4, evals=[(valid_dmatrix, 'validation')]) pred = xgb_model.predict(test_dmatrix)