/*! * Copyright (c) 2015 by Contributors * \file data.h * \brief defines common input data structure, * and interface for handling the input data */ #ifndef DMLC_DATA_H_ #define DMLC_DATA_H_ #include #include #include #include "./base.h" #include "./io.h" #include "./logging.h" #include "./registry.h" // To help C Preprocessor with processing c++ templated types #define __DMLC_COMMA , namespace dmlc { /*! * \brief this defines the float point * that will be used to store feature values */ typedef float real_t; /*! * \brief this defines the unsigned integer type * that can normally be used to store feature index */ typedef unsigned index_t; // This file describes common data structure that can be used // for large-scale machine learning, this may not be a complete list // But we will keep the most common and useful ones, and keep adding new ones /*! * \brief data iterator interface * this is not a C++ style iterator, but nice for data pulling:) * This interface is used to pull in the data * The system can do some useful tricks for you like pre-fetching * from disk and pre-computation. * * Usage example: * \code * * itr->BeforeFirst(); * while (itr->Next()) { * const DType &batch = itr->Value(); * // some computations * } * \endcode * \tparam DType the data type */ template class DataIter { public: /*! \brief destructor */ virtual ~DataIter(void) {} /*! \brief set before first of the item */ virtual void BeforeFirst(void) = 0; /*! \brief move to next item */ virtual bool Next(void) = 0; /*! \brief get current data */ virtual const DType &Value(void) const = 0; }; /*! * \brief one row of training instance * \tparam IndexType type of index * \tparam DType type of data (both label and value will be of DType */ template class Row { public: /*! \brief label of the instance */ const DType *label; /*! \brief weight of the instance */ const real_t *weight; /*! \brief session-id of the instance */ const uint64_t *qid; /*! \brief length of the sparse vector */ size_t length; /*! * \brief field of each instance */ const IndexType *field; /*! * \brief index of each instance */ const IndexType *index; /*! * \brief array value of each instance, this can be NULL * indicating every value is set to be 1 */ const DType *value; /*! * \param i the input index * \return field for i-th feature */ inline IndexType get_field(size_t i) const { return field[i]; } /*! * \param i the input index * \return i-th feature */ inline IndexType get_index(size_t i) const { return index[i]; } /*! * \param i the input index * \return i-th feature value, this function is always * safe even when value == NULL */ inline DType get_value(size_t i) const { return value == NULL ? DType(1.0f) : value[i]; } /*! * \return the label of the instance */ inline DType get_label() const { return *label; } /*! * \return the weight of the instance, this function is always * safe even when weight == NULL */ inline real_t get_weight() const { return weight == NULL ? 1.0f : *weight; } /*! * \return the qid of the instance, this function is always * safe even when qid == NULL */ inline uint64_t get_qid() const { return qid == NULL ? 0 : *qid; } /*! * \brief helper function to compute dot product of current * \param weight the dense array of weight we want to product * \param size the size of the weight vector * \tparam V type of the weight vector * \return the result of dot product */ template inline V SDot(const V *weight, size_t size) const { V sum = static_cast(0); if (value == NULL) { for (size_t i = 0; i < length; ++i) { CHECK(index[i] < size) << "feature index exceed bound"; sum += weight[index[i]]; } } else { for (size_t i = 0; i < length; ++i) { CHECK(index[i] < size) << "feature index exceed bound"; sum += weight[index[i]] * value[i]; } } return sum; } }; /*! * \brief a block of data, containing several rows in sparse matrix * This is useful for (streaming-sxtyle) algorithms that scans through rows of data * examples include: SGD, GD, L-BFGS, kmeans * * The size of batch is usually large enough so that parallelizing over the rows * can give significant speedup * \tparam IndexType type to store the index used in row batch * \tparam DType type to store the label and value used in row batch */ template struct RowBlock { /*! \brief batch size */ size_t size; /*! \brief array[size+1], row pointer to beginning of each rows */ const size_t *offset; /*! \brief array[size] label of each instance */ const DType *label; /*! \brief With weight: array[size] label of each instance, otherwise nullptr */ const real_t *weight; /*! \brief With qid: array[size] session id of each instance, otherwise nullptr */ const uint64_t *qid; /*! \brief field id*/ const IndexType *field; /*! \brief feature index */ const IndexType *index; /*! \brief feature value, can be NULL, indicating all values are 1 */ const DType *value; /*! * \brief get specific rows in the batch * \param rowid the rowid in that row * \return the instance corresponding to the row */ inline Row operator[](size_t rowid) const; /*! \return memory cost of the block in bytes */ inline size_t MemCostBytes(void) const { size_t cost = size * (sizeof(size_t) + sizeof(DType)); if (weight != NULL) cost += size * sizeof(real_t); if (qid != NULL) cost += size * sizeof(size_t); size_t ndata = offset[size] - offset[0]; if (field != NULL) cost += ndata * sizeof(IndexType); if (index != NULL) cost += ndata * sizeof(IndexType); if (value != NULL) cost += ndata * sizeof(DType); return cost; } /*! * \brief slice a RowBlock to get rows in [begin, end) * \param begin the begin row index * \param end the end row index * \return the sliced RowBlock */ inline RowBlock Slice(size_t begin, size_t end) const { CHECK(begin <= end && end <= size); RowBlock ret; ret.size = end - begin; ret.label = label + begin; if (weight != NULL) { ret.weight = weight + begin; } else { ret.weight = NULL; } if (qid != NULL) { ret.qid = qid + begin; } else { ret.qid = NULL; } ret.offset = offset + begin; ret.field = field; ret.index = index; ret.value = value; return ret; } }; /*! * \brief Data structure that holds the data * Row block iterator interface that gets RowBlocks * Difference between RowBlockIter and Parser: * RowBlockIter caches the data internally that can be used * to iterate the dataset multiple times, * Parser holds very limited internal state and was usually * used to read data only once * * \sa Parser * \tparam IndexType type of index in RowBlock * \tparam DType type of label and value in RowBlock * Create function was only implemented for IndexType uint64_t and uint32_t * and DType real_t and int */ template class RowBlockIter : public DataIter > { public: /*! * \brief create a new instance of iterator that returns rowbatch * by default, a in-memory based iterator will be returned * * \param uri the uri of the input, can contain hdfs prefix * \param part_index the part id of current input * \param num_parts total number of splits * \param type type of dataset can be: "libsvm", ... * * \return the created data iterator */ static RowBlockIter * Create(const char *uri, unsigned part_index, unsigned num_parts, const char *type); /*! \return maximum feature dimension in the dataset */ virtual size_t NumCol() const = 0; }; /*! * \brief parser interface that parses input data * used to load dmlc data format into your own data format * Difference between RowBlockIter and Parser: * RowBlockIter caches the data internally that can be used * to iterate the dataset multiple times, * Parser holds very limited internal state and was usually * used to read data only once * * * \sa RowBlockIter * \tparam IndexType type of index in RowBlock * \tparam DType type of label and value in RowBlock * Create function was only implemented for IndexType uint64_t and uint32_t * and DType real_t and int */ template class Parser : public DataIter > { public: /*! * \brief create a new instance of parser based on the "type" * * \param uri_ the uri of the input, can contain hdfs prefix * \param part_index the part id of current input * \param num_parts total number of splits * \param type type of dataset can be: "libsvm", "auto", ... * * When "auto" is passed, the type is decided by format argument string in URI. * * \return the created parser */ static Parser * Create(const char *uri_, unsigned part_index, unsigned num_parts, const char *type); /*! \return size of bytes read so far */ virtual size_t BytesRead(void) const = 0; /*! \brief Factory type of the parser*/ typedef Parser* (*Factory) (const std::string& path, const std::map& args, unsigned part_index, unsigned num_parts); }; /*! * \brief registry entry of parser factory * \tparam IndexType The type of index * \tparam DType The type of label and value */ template struct ParserFactoryReg : public FunctionRegEntryBase, typename Parser::Factory> {}; /*! * \brief Register a new distributed parser to dmlc-core. * * \param IndexType The type of Batch index, can be uint32_t or uint64_t * \param DataType The type of Batch label and value, can be real_t or int * \param TypeName The typename of of the data. * \param FactoryFunction The factory function that creates the parser. * * \begincode * * // define the factory function * template * Parser* * CreateLibSVMParser(const char* uri, unsigned part_index, unsigned num_parts) { * return new LibSVMParser(uri, part_index, num_parts); * } * * // Register it to DMLC * // Then we can use Parser::Create(uri, part_index, num_parts, "libsvm"); * // to create the parser * * DMLC_REGISTER_DATA_PARSER(uint32_t, real_t, libsvm, CreateLibSVMParser); * DMLC_REGISTER_DATA_PARSER(uint64_t, real_t, libsvm, CreateLibSVMParser); * * \endcode */ #define DMLC_REGISTER_DATA_PARSER(IndexType, DataType, TypeName, FactoryFunction) \ DMLC_REGISTRY_REGISTER(ParserFactoryReg, \ ParserFactoryReg ## _ ## IndexType ## _ ## DataType, TypeName) \ .set_body(FactoryFunction) // implementation of operator[] template inline Row RowBlock::operator[](size_t rowid) const { CHECK(rowid < size); Row inst; inst.label = label + rowid; if (weight != NULL) { inst.weight = weight + rowid; } else { inst.weight = NULL; } if (qid != NULL) { inst.qid = qid + rowid; } else { inst.qid = NULL; } inst.length = offset[rowid + 1] - offset[rowid]; if (field != NULL) { inst.field = field + offset[rowid]; } else { inst.field = NULL; } inst.index = index + offset[rowid]; if (value == NULL) { inst.value = NULL; } else { inst.value = value + offset[rowid]; } return inst; } } // namespace dmlc #endif // DMLC_DATA_H_