/*! * Copyright 2017-2018 XGBoost contributors */ #include #include #include #include "../helpers.h" #include "gtest/gtest.h" #include "../../../src/data/sparse_page_source.h" #include "../../../src/gbm/gbtree_model.h" #include "../../../src/tree/updater_gpu_hist.cu" #include "../../../src/tree/updater_gpu_common.cuh" #include "../../../src/common/common.h" namespace xgboost { namespace tree { void BuildGidx(DeviceShard* shard, int n_rows, int n_cols, bst_float sparsity=0) { auto dmat = CreateDMatrix(n_rows, n_cols, sparsity, 3); const SparsePage& batch = *(*dmat)->GetRowBatches().begin(); common::HistCutMatrix cmat; cmat.row_ptr = {0, 3, 6, 9, 12, 15, 18, 21, 24}; cmat.min_val = {0.1, 0.2, 0.3, 0.1, 0.2, 0.3, 0.2, 0.2}; // 24 cut fields, 3 cut fields for each feature (column). cmat.cut = {0.30, 0.67, 1.64, 0.32, 0.77, 1.95, 0.29, 0.70, 1.80, 0.32, 0.75, 1.85, 0.18, 0.59, 1.69, 0.25, 0.74, 2.00, 0.26, 0.74, 1.98, 0.26, 0.71, 1.83}; shard->InitRowPtrs(batch); shard->InitCompressedData(cmat, batch); delete dmat; } TEST(GpuHist, BuildGidxDense) { int const n_rows = 16, n_cols = 8; TrainParam param; param.max_depth = 1; param.n_gpus = 1; param.max_leaves = 0; DeviceShard shard(0, 0, 0, n_rows, param); BuildGidx(&shard, n_rows, n_cols); std::vector h_gidx_buffer; h_gidx_buffer = shard.gidx_buffer.AsVector(); common::CompressedIterator gidx(h_gidx_buffer.data(), 25); ASSERT_EQ(shard.row_stride, n_cols); std::vector solution = { 0, 3, 8, 9, 14, 17, 20, 21, 0, 4, 7, 10, 14, 16, 19, 22, 1, 3, 7, 11, 14, 15, 19, 21, 2, 3, 7, 9, 13, 16, 20, 22, 2, 3, 6, 9, 12, 16, 20, 21, 1, 5, 6, 10, 13, 16, 20, 21, 2, 5, 8, 9, 13, 17, 19, 22, 2, 4, 6, 10, 14, 17, 19, 21, 2, 5, 7, 9, 13, 16, 19, 22, 0, 3, 8, 10, 12, 16, 19, 22, 1, 3, 7, 10, 13, 16, 19, 21, 1, 3, 8, 10, 13, 17, 20, 22, 2, 4, 6, 9, 14, 15, 19, 22, 1, 4, 6, 9, 13, 16, 19, 21, 2, 4, 8, 10, 14, 15, 19, 22, 1, 4, 7, 10, 14, 16, 19, 21, }; for (size_t i = 0; i < n_rows * n_cols; ++i) { ASSERT_EQ(solution[i], gidx[i]); } } TEST(GpuHist, BuildGidxSparse) { int const n_rows = 16, n_cols = 8; TrainParam param; param.max_depth = 1; param.n_gpus = 1; param.max_leaves = 0; DeviceShard shard(0, 0, 0, n_rows, param); BuildGidx(&shard, n_rows, n_cols, 0.9f); std::vector h_gidx_buffer; h_gidx_buffer = shard.gidx_buffer.AsVector(); common::CompressedIterator gidx(h_gidx_buffer.data(), 25); ASSERT_LE(shard.row_stride, 3); // row_stride = 3, 16 rows, 48 entries for ELLPack std::vector solution = { 15, 24, 24, 0, 24, 24, 24, 24, 24, 24, 24, 24, 20, 24, 24, 24, 24, 24, 24, 24, 24, 5, 24, 24, 0, 16, 24, 15, 24, 24, 24, 24, 24, 7, 14, 16, 4, 24, 24, 24, 24, 24, 9, 24, 24, 1, 24, 24 }; for (size_t i = 0; i < n_rows * shard.row_stride; ++i) { ASSERT_EQ(solution[i], gidx[i]); } } std::vector GetHostHistGpair() { // 24 bins, 3 bins for each feature (column). std::vector hist_gpair = { {0.8314, 0.7147}, {1.7989, 3.7312}, {3.3846, 3.4598}, {2.9277, 3.5886}, {1.8429, 2.4152}, {1.2443, 1.9019}, {1.6380, 2.9174}, {1.5657, 2.5107}, {2.8111, 2.4776}, {2.1322, 3.0651}, {3.2927, 3.8540}, {0.5899, 0.9866}, {1.5185, 1.6263}, {2.0686, 3.1844}, {2.4278, 3.0950}, {1.5105, 2.1403}, {2.6922, 4.2217}, {1.8122, 1.5437}, {0.0000, 0.0000}, {4.3245, 5.7955}, {1.6903, 2.1103}, {2.4012, 4.4754}, {3.6136, 3.4303}, {0.0000, 0.0000} }; return hist_gpair; } void TestBuildHist(GPUHistBuilderBase& builder) { int const n_rows = 16, n_cols = 8; TrainParam param; param.max_depth = 6; param.n_gpus = 1; param.max_leaves = 0; DeviceShard shard(0, 0, 0, n_rows, param); BuildGidx(&shard, n_rows, n_cols); xgboost::SimpleLCG gen; xgboost::SimpleRealUniformDistribution dist(0.0f, 1.0f); std::vector h_gpair(n_rows); for (size_t i = 0; i < h_gpair.size(); ++i) { bst_float grad = dist(&gen); bst_float hess = dist(&gen); h_gpair[i] = GradientPair(grad, hess); } thrust::device_vector gpair (n_rows); gpair = h_gpair; int num_symbols = shard.n_bins + 1; thrust::host_vector h_gidx_buffer ( shard.gidx_buffer.Size()); common::CompressedByteT* d_gidx_buffer_ptr = shard.gidx_buffer.Data(); dh::safe_cuda(cudaMemcpy(h_gidx_buffer.data(), d_gidx_buffer_ptr, sizeof(common::CompressedByteT) * shard.gidx_buffer.Size(), cudaMemcpyDeviceToHost)); auto gidx = common::CompressedIterator(h_gidx_buffer.data(), num_symbols); shard.ridx_segments.resize(1); shard.ridx_segments[0] = Segment(0, n_rows); shard.hist.AllocateHistogram(0); shard.gpair.copy(gpair.begin(), gpair.end()); thrust::sequence(shard.ridx.CurrentDVec().tbegin(), shard.ridx.CurrentDVec().tend()); builder.Build(&shard, 0); DeviceHistogram d_hist = shard.hist; GradientPairSumT* d_histptr {d_hist.GetHistPtr(0)}; // d_hist.data stored in float, not gradient pair thrust::host_vector h_result (d_hist.data.size()/2); size_t data_size = sizeof(GradientPairSumT) / ( sizeof(GradientPairSumT) / sizeof(GradientPairSumT::ValueT)); data_size *= d_hist.data.size(); dh::safe_cuda(cudaMemcpy(h_result.data(), d_histptr, data_size, cudaMemcpyDeviceToHost)); std::vector solution = GetHostHistGpair(); std::cout << std::fixed; for (size_t i = 0; i < h_result.size(); ++i) { EXPECT_NEAR(h_result[i].GetGrad(), solution[i].GetGrad(), 0.01f); EXPECT_NEAR(h_result[i].GetHess(), solution[i].GetHess(), 0.01f); } } TEST(GpuHist, BuildHistGlobalMem) { GlobalMemHistBuilder builder; TestBuildHist(builder); } TEST(GpuHist, BuildHistSharedMem) { SharedMemHistBuilder builder; TestBuildHist(builder); } common::HistCutMatrix GetHostCutMatrix () { common::HistCutMatrix cmat; cmat.row_ptr = {0, 3, 6, 9, 12, 15, 18, 21, 24}; cmat.min_val = {0.1, 0.2, 0.3, 0.1, 0.2, 0.3, 0.2, 0.2}; // 24 cut fields, 3 cut fields for each feature (column). // Each row of the cut represents the cuts for a data column. cmat.cut = {0.30, 0.67, 1.64, 0.32, 0.77, 1.95, 0.29, 0.70, 1.80, 0.32, 0.75, 1.85, 0.18, 0.59, 1.69, 0.25, 0.74, 2.00, 0.26, 0.74, 1.98, 0.26, 0.71, 1.83}; return cmat; } // TODO(trivialfis): This test is over simplified. TEST(GpuHist, EvaluateSplits) { constexpr int n_rows = 16; constexpr int n_cols = 8; TrainParam param; param.max_depth = 1; param.n_gpus = 1; param.colsample_bylevel = 1; param.colsample_bytree = 1; param.min_child_weight = 0.01; // Disable all parameters. param.reg_alpha = 0.0; param.reg_lambda = 0; param.max_delta_step = 0.0; for (size_t i = 0; i < n_cols; ++i) { param.monotone_constraints.emplace_back(0); } int max_bins = 4; // Initialize DeviceShard std::unique_ptr shard {new DeviceShard(0, 0, 0, n_rows, param)}; // Initialize DeviceShard::node_sum_gradients shard->node_sum_gradients = {{6.4, 12.8}}; // Initialize DeviceShard::cut common::HistCutMatrix cmat = GetHostCutMatrix(); // Copy cut matrix to device. DeviceShard::DeviceHistCutMatrix cut; shard->ba.Allocate(0, true, &(shard->cut_.feature_segments), cmat.row_ptr.size(), &(shard->cut_.min_fvalue), cmat.min_val.size(), &(shard->cut_.gidx_fvalue_map), 24, &(shard->monotone_constraints), n_cols); shard->cut_.feature_segments.copy(cmat.row_ptr.begin(), cmat.row_ptr.end()); shard->cut_.gidx_fvalue_map.copy(cmat.cut.begin(), cmat.cut.end()); shard->monotone_constraints.copy(param.monotone_constraints.begin(), param.monotone_constraints.end()); // Initialize DeviceShard::hist shard->hist.Init(0, (max_bins - 1) * n_cols); shard->hist.AllocateHistogram(0); // Each row of hist_gpair represents gpairs for one feature. // Each entry represents a bin. std::vector hist_gpair = GetHostHistGpair(); std::vector hist; for (auto pair : hist_gpair) { hist.push_back(pair.GetGrad()); hist.push_back(pair.GetHess()); } ASSERT_EQ(shard->hist.data.size(), hist.size()); thrust::copy(hist.begin(), hist.end(), shard->hist.data.begin()); // Initialize GPUHistMaker GPUHistMaker hist_maker = GPUHistMaker(); hist_maker.param_ = param; hist_maker.shards_.push_back(std::move(shard)); hist_maker.column_sampler_.Init(n_cols, param.colsample_bylevel, param.colsample_bytree, false); RegTree tree; tree.InitModel(); MetaInfo info; info.num_row_ = n_rows; info.num_col_ = n_cols; hist_maker.info_ = &info; hist_maker.node_value_constraints_.resize(1); hist_maker.node_value_constraints_[0].lower_bound = -1.0; hist_maker.node_value_constraints_[0].upper_bound = 1.0; std::vector res = hist_maker.EvaluateSplits({0}, &tree); ASSERT_EQ(res.size(), 1); ASSERT_EQ(res[0].findex, 7); ASSERT_NEAR(res[0].fvalue, 0.26, xgboost::kRtEps); } TEST(GpuHist, ApplySplit) { GPUHistMaker hist_maker = GPUHistMaker(); int constexpr nid = 0; int constexpr n_rows = 16; int constexpr n_cols = 8; TrainParam param; param.silent = true; // Initialize shard for (size_t i = 0; i < n_cols; ++i) { param.monotone_constraints.emplace_back(0); } hist_maker.shards_.resize(1); hist_maker.shards_[0].reset(new DeviceShard(0, 0, 0, n_rows, param)); auto& shard = hist_maker.shards_.at(0); shard->ridx_segments.resize(3); // 3 nodes. shard->node_sum_gradients.resize(3); shard->ridx_segments[0] = Segment(0, n_rows); shard->ba.Allocate(0, true, &(shard->ridx), n_rows, &(shard->position), n_rows); shard->row_stride = n_cols; thrust::sequence(shard->ridx.CurrentDVec().tbegin(), shard->ridx.CurrentDVec().tend()); dh::safe_cuda(cudaMallocHost(&(shard->tmp_pinned), sizeof(int64_t))); // Initialize GPUHistMaker hist_maker.param_ = param; RegTree tree; tree.InitModel(); DeviceSplitCandidate candidate; candidate.Update(2, kLeftDir, 0.59, 4, // fvalue has to be equal to one of the cut field GradientPair(8.2, 2.8), GradientPair(6.3, 3.6), GPUTrainingParam(param)); GPUHistMaker::ExpandEntry candidate_entry {0, 0, candidate, 0}; candidate_entry.nid = nid; auto const& nodes = tree.GetNodes(); size_t n_nodes = nodes.size(); // Used to get bin_id in update position. common::HistCutMatrix cmat = GetHostCutMatrix(); hist_maker.hmat_ = cmat; MetaInfo info; info.num_row_ = n_rows; info.num_col_ = n_cols; info.num_nonzero_ = n_rows * n_cols; // Dense // Initialize gidx int n_bins = 24; int row_stride = n_cols; int num_symbols = n_bins + 1; size_t compressed_size_bytes = common::CompressedBufferWriter::CalculateBufferSize( row_stride * n_rows, num_symbols); shard->ba.Allocate(0, param.silent, &(shard->gidx_buffer), compressed_size_bytes); common::CompressedBufferWriter wr(num_symbols); std::vector h_gidx (n_rows * row_stride); std::iota(h_gidx.begin(), h_gidx.end(), 0); std::vector h_gidx_compressed (compressed_size_bytes); wr.Write(h_gidx_compressed.data(), h_gidx.begin(), h_gidx.end()); shard->gidx_buffer.copy(h_gidx_compressed.begin(), h_gidx_compressed.end()); shard->gidx = common::CompressedIterator( shard->gidx_buffer.Data(), num_symbols); hist_maker.info_ = &info; hist_maker.ApplySplit(candidate_entry, &tree); ASSERT_FALSE(tree[nid].IsLeaf()); int left_nidx = tree[nid].LeftChild(); int right_nidx = tree[nid].RightChild(); ASSERT_EQ(shard->ridx_segments[left_nidx].begin, 0); ASSERT_EQ(shard->ridx_segments[left_nidx].end, 6); ASSERT_EQ(shard->ridx_segments[right_nidx].begin, 6); ASSERT_EQ(shard->ridx_segments[right_nidx].end, 16); } TEST(GpuHist, MGPU_mock) { // Attempt to choose multiple GPU devices int ngpu; dh::safe_cuda(cudaGetDeviceCount(&ngpu)); CHECK_GT(ngpu, 1); for (int i = 0; i < ngpu; ++i) { dh::safe_cuda(cudaSetDevice(i)); } } } // namespace tree } // namespace xgboost