{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy.optimize import linear_sum_assignment" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(8, array([0, 1, 2, 3]), array([3, 2, 0, 1]))" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cost = np.array([\n", " [2, 5, 1, 1],\n", " [6, 8, 4, 6],\n", " [3, 7, 3, 2],\n", " [0, 0, 0, 0]\n", "])\n", "row_ind, col_ind = linear_sum_assignment(cost)\n", "cost[row_ind, col_ind].sum(), row_ind, col_ind" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(15.0, array([0, 1, 2]), array([0, 3, 1]))" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cost = np.array([\n", " [8.0, 5.0, 9.0, 9.0],\n", " [4.0, 2.0, 6.0, 4.0],\n", " [7.0, 3.0, 7.0, 8.0],\n", "])\n", "\n", "row_ind, col_ind = linear_sum_assignment(cost)\n", "cost[row_ind, col_ind].sum(), row_ind, col_ind" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "88db7227d3cc9a138557c8e6d2b17faeee1265d333fb084011d74bc0d566fe18" } } }, "nbformat": 4, "nbformat_minor": 2 }