/********************************************************************* * * $Id: yocto_motor.h 59978 2024-03-18 15:04:46Z mvuilleu $ * * Declares yFindMotor(), the high-level API for Motor functions * * - - - - - - - - - License information: - - - - - - - - - * * Copyright (C) 2011 and beyond by Yoctopuce Sarl, Switzerland. * * Yoctopuce Sarl (hereafter Licensor) grants to you a perpetual * non-exclusive license to use, modify, copy and integrate this * file into your software for the sole purpose of interfacing * with Yoctopuce products. * * You may reproduce and distribute copies of this file in * source or object form, as long as the sole purpose of this * code is to interface with Yoctopuce products. You must retain * this notice in the distributed source file. * * You should refer to Yoctopuce General Terms and Conditions * for additional information regarding your rights and * obligations. * * THE SOFTWARE AND DOCUMENTATION ARE PROVIDED 'AS IS' WITHOUT * WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING * WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO * EVENT SHALL LICENSOR BE LIABLE FOR ANY INCIDENTAL, SPECIAL, * INDIRECT OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, * COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR * SERVICES, ANY CLAIMS BY THIRD PARTIES (INCLUDING BUT NOT * LIMITED TO ANY DEFENSE THEREOF), ANY CLAIMS FOR INDEMNITY OR * CONTRIBUTION, OR OTHER SIMILAR COSTS, WHETHER ASSERTED ON THE * BASIS OF CONTRACT, TORT (INCLUDING NEGLIGENCE), BREACH OF * WARRANTY, OR OTHERWISE. * *********************************************************************/ #ifndef YOCTO_MOTOR_H #define YOCTO_MOTOR_H #include #include #include "yocto_api.h" #ifdef YOCTOLIB_NAMESPACE namespace YOCTOLIB_NAMESPACE { #endif //--- (YMotor return codes) //--- (end of YMotor return codes) //--- (YMotor yapiwrapper) //--- (end of YMotor yapiwrapper) //--- (YMotor definitions) class YMotor; // forward declaration typedef void (*YMotorValueCallback)(YMotor *func, const string& functionValue); #ifndef _Y_MOTORSTATUS_ENUM #define _Y_MOTORSTATUS_ENUM typedef enum { Y_MOTORSTATUS_IDLE = 0, Y_MOTORSTATUS_BRAKE = 1, Y_MOTORSTATUS_FORWD = 2, Y_MOTORSTATUS_BACKWD = 3, Y_MOTORSTATUS_LOVOLT = 4, Y_MOTORSTATUS_HICURR = 5, Y_MOTORSTATUS_HIHEAT = 6, Y_MOTORSTATUS_FAILSF = 7, Y_MOTORSTATUS_INVALID = -1, } Y_MOTORSTATUS_enum; #endif #define Y_DRIVINGFORCE_INVALID (YAPI_INVALID_DOUBLE) #define Y_BRAKINGFORCE_INVALID (YAPI_INVALID_DOUBLE) #define Y_CUTOFFVOLTAGE_INVALID (YAPI_INVALID_DOUBLE) #define Y_OVERCURRENTLIMIT_INVALID (YAPI_INVALID_UINT) #define Y_FREQUENCY_INVALID (YAPI_INVALID_DOUBLE) #define Y_STARTERTIME_INVALID (YAPI_INVALID_UINT) #define Y_FAILSAFETIMEOUT_INVALID (YAPI_INVALID_UINT) #define Y_COMMAND_INVALID (YAPI_INVALID_STRING) //--- (end of YMotor definitions) //--- (YMotor declaration) /** * YMotor Class: motor control interface, available for instance in the Yocto-Motor-DC * * The YMotor class allows you to drive a DC motor. It can be used to configure the * power sent to the motor to make it turn both ways, but also to drive accelerations * and decelerations. The motor will then accelerate automatically: you will not * have to monitor it. The API also allows to slow down the motor by shortening * its terminals: the motor will then act as an electromagnetic brake. */ class YOCTO_CLASS_EXPORT YMotor: public YFunction { #ifdef __BORLANDC__ #pragma option push -w-8022 #endif //--- (end of YMotor declaration) protected: //--- (YMotor attributes) // Attributes (function value cache) Y_MOTORSTATUS_enum _motorStatus; double _drivingForce; double _brakingForce; double _cutOffVoltage; int _overCurrentLimit; double _frequency; int _starterTime; int _failSafeTimeout; string _command; YMotorValueCallback _valueCallbackMotor; friend YMotor *yFindMotor(const string& func); friend YMotor *yFirstMotor(void); // Function-specific method for parsing of JSON output and caching result virtual int _parseAttr(YJSONObject *json_val); // Constructor is protected, use yFindMotor factory function to instantiate YMotor(const string& func); //--- (end of YMotor attributes) public: virtual ~YMotor(); //--- (YMotor accessors declaration) static const Y_MOTORSTATUS_enum MOTORSTATUS_IDLE = Y_MOTORSTATUS_IDLE; static const Y_MOTORSTATUS_enum MOTORSTATUS_BRAKE = Y_MOTORSTATUS_BRAKE; static const Y_MOTORSTATUS_enum MOTORSTATUS_FORWD = Y_MOTORSTATUS_FORWD; static const Y_MOTORSTATUS_enum MOTORSTATUS_BACKWD = Y_MOTORSTATUS_BACKWD; static const Y_MOTORSTATUS_enum MOTORSTATUS_LOVOLT = Y_MOTORSTATUS_LOVOLT; static const Y_MOTORSTATUS_enum MOTORSTATUS_HICURR = Y_MOTORSTATUS_HICURR; static const Y_MOTORSTATUS_enum MOTORSTATUS_HIHEAT = Y_MOTORSTATUS_HIHEAT; static const Y_MOTORSTATUS_enum MOTORSTATUS_FAILSF = Y_MOTORSTATUS_FAILSF; static const Y_MOTORSTATUS_enum MOTORSTATUS_INVALID = Y_MOTORSTATUS_INVALID; static const double DRIVINGFORCE_INVALID; static const double BRAKINGFORCE_INVALID; static const double CUTOFFVOLTAGE_INVALID; static const int OVERCURRENTLIMIT_INVALID = YAPI_INVALID_UINT; static const double FREQUENCY_INVALID; static const int STARTERTIME_INVALID = YAPI_INVALID_UINT; static const int FAILSAFETIMEOUT_INVALID = YAPI_INVALID_UINT; static const string COMMAND_INVALID; /** * Return the controller state. Possible states are: * IDLE when the motor is stopped/in free wheel, ready to start; * FORWD when the controller is driving the motor forward; * BACKWD when the controller is driving the motor backward; * BRAKE when the controller is braking; * LOVOLT when the controller has detected a low voltage condition; * HICURR when the controller has detected an over current condition; * HIHEAT when the controller has detected an overheat condition; * FAILSF when the controller switched on the failsafe security. * * When an error condition occurred (LOVOLT, HICURR, HIHEAT, FAILSF), the controller * status must be explicitly reset using the resetStatus function. * * @return a value among YMotor::MOTORSTATUS_IDLE, YMotor::MOTORSTATUS_BRAKE, YMotor::MOTORSTATUS_FORWD, * YMotor::MOTORSTATUS_BACKWD, YMotor::MOTORSTATUS_LOVOLT, YMotor::MOTORSTATUS_HICURR, * YMotor::MOTORSTATUS_HIHEAT and YMotor::MOTORSTATUS_FAILSF * * On failure, throws an exception or returns YMotor::MOTORSTATUS_INVALID. */ Y_MOTORSTATUS_enum get_motorStatus(void); inline Y_MOTORSTATUS_enum motorStatus(void) { return this->get_motorStatus(); } int set_motorStatus(Y_MOTORSTATUS_enum newval); inline int setMotorStatus(Y_MOTORSTATUS_enum newval) { return this->set_motorStatus(newval); } /** * Changes immediately the power sent to the motor. The value is a percentage between -100% * to 100%. If you want go easy on your mechanics and avoid excessive current consumption, * try to avoid brutal power changes. For example, immediate transition from forward full power * to reverse full power is a very bad idea. Each time the driving power is modified, the * braking power is set to zero. * * @param newval : a floating point number corresponding to immediately the power sent to the motor * * @return YAPI::SUCCESS if the call succeeds. * * On failure, throws an exception or returns a negative error code. */ int set_drivingForce(double newval); inline int setDrivingForce(double newval) { return this->set_drivingForce(newval); } /** * Returns the power sent to the motor, as a percentage between -100% and +100%. * * @return a floating point number corresponding to the power sent to the motor, as a percentage * between -100% and +100% * * On failure, throws an exception or returns YMotor::DRIVINGFORCE_INVALID. */ double get_drivingForce(void); inline double drivingForce(void) { return this->get_drivingForce(); } /** * Changes immediately the braking force applied to the motor (in percents). * The value 0 corresponds to no braking (free wheel). When the braking force * is changed, the driving power is set to zero. The value is a percentage. * * @param newval : a floating point number corresponding to immediately the braking force applied to * the motor (in percents) * * @return YAPI::SUCCESS if the call succeeds. * * On failure, throws an exception or returns a negative error code. */ int set_brakingForce(double newval); inline int setBrakingForce(double newval) { return this->set_brakingForce(newval); } /** * Returns the braking force applied to the motor, as a percentage. * The value 0 corresponds to no braking (free wheel). * * @return a floating point number corresponding to the braking force applied to the motor, as a percentage * * On failure, throws an exception or returns YMotor::BRAKINGFORCE_INVALID. */ double get_brakingForce(void); inline double brakingForce(void) { return this->get_brakingForce(); } /** * Changes the threshold voltage under which the controller automatically switches to error state * and prevents further current draw. This setting prevent damage to a battery that can * occur when drawing current from an "empty" battery. * Note that whatever the cutoff threshold, the controller switches to undervoltage * error state if the power supply goes under 3V, even for a very brief time. * Remember to call the saveToFlash() * method of the module if the modification must be kept. * * @param newval : a floating point number corresponding to the threshold voltage under which the * controller automatically switches to error state * and prevents further current draw * * @return YAPI::SUCCESS if the call succeeds. * * On failure, throws an exception or returns a negative error code. */ int set_cutOffVoltage(double newval); inline int setCutOffVoltage(double newval) { return this->set_cutOffVoltage(newval); } /** * Returns the threshold voltage under which the controller automatically switches to error state * and prevents further current draw. This setting prevents damage to a battery that can * occur when drawing current from an "empty" battery. * * @return a floating point number corresponding to the threshold voltage under which the controller * automatically switches to error state * and prevents further current draw * * On failure, throws an exception or returns YMotor::CUTOFFVOLTAGE_INVALID. */ double get_cutOffVoltage(void); inline double cutOffVoltage(void) { return this->get_cutOffVoltage(); } /** * Returns the current threshold (in mA) above which the controller automatically * switches to error state. A zero value means that there is no limit. * * @return an integer corresponding to the current threshold (in mA) above which the controller automatically * switches to error state * * On failure, throws an exception or returns YMotor::OVERCURRENTLIMIT_INVALID. */ int get_overCurrentLimit(void); inline int overCurrentLimit(void) { return this->get_overCurrentLimit(); } /** * Changes the current threshold (in mA) above which the controller automatically * switches to error state. A zero value means that there is no limit. Note that whatever the * current limit is, the controller switches to OVERCURRENT status if the current * goes above 32A, even for a very brief time. Remember to call the saveToFlash() * method of the module if the modification must be kept. * * @param newval : an integer corresponding to the current threshold (in mA) above which the * controller automatically * switches to error state * * @return YAPI::SUCCESS if the call succeeds. * * On failure, throws an exception or returns a negative error code. */ int set_overCurrentLimit(int newval); inline int setOverCurrentLimit(int newval) { return this->set_overCurrentLimit(newval); } /** * Changes the PWM frequency used to control the motor. Low frequency is usually * more efficient and may help the motor to start, but an audible noise might be * generated. A higher frequency reduces the noise, but more energy is converted * into heat. Remember to call the saveToFlash() * method of the module if the modification must be kept. * * @param newval : a floating point number corresponding to the PWM frequency used to control the motor * * @return YAPI::SUCCESS if the call succeeds. * * On failure, throws an exception or returns a negative error code. */ int set_frequency(double newval); inline int setFrequency(double newval) { return this->set_frequency(newval); } /** * Returns the PWM frequency used to control the motor. * * @return a floating point number corresponding to the PWM frequency used to control the motor * * On failure, throws an exception or returns YMotor::FREQUENCY_INVALID. */ double get_frequency(void); inline double frequency(void) { return this->get_frequency(); } /** * Returns the duration (in ms) during which the motor is driven at low frequency to help * it start up. * * @return an integer corresponding to the duration (in ms) during which the motor is driven at low * frequency to help * it start up * * On failure, throws an exception or returns YMotor::STARTERTIME_INVALID. */ int get_starterTime(void); inline int starterTime(void) { return this->get_starterTime(); } /** * Changes the duration (in ms) during which the motor is driven at low frequency to help * it start up. Remember to call the saveToFlash() * method of the module if the modification must be kept. * * @param newval : an integer corresponding to the duration (in ms) during which the motor is driven * at low frequency to help * it start up * * @return YAPI::SUCCESS if the call succeeds. * * On failure, throws an exception or returns a negative error code. */ int set_starterTime(int newval); inline int setStarterTime(int newval) { return this->set_starterTime(newval); } /** * Returns the delay in milliseconds allowed for the controller to run autonomously without * receiving any instruction from the control process. When this delay has elapsed, * the controller automatically stops the motor and switches to FAILSAFE error. * Failsafe security is disabled when the value is zero. * * @return an integer corresponding to the delay in milliseconds allowed for the controller to run * autonomously without * receiving any instruction from the control process * * On failure, throws an exception or returns YMotor::FAILSAFETIMEOUT_INVALID. */ int get_failSafeTimeout(void); inline int failSafeTimeout(void) { return this->get_failSafeTimeout(); } /** * Changes the delay in milliseconds allowed for the controller to run autonomously without * receiving any instruction from the control process. When this delay has elapsed, * the controller automatically stops the motor and switches to FAILSAFE error. * Failsafe security is disabled when the value is zero. * Remember to call the saveToFlash() * method of the module if the modification must be kept. * * @param newval : an integer corresponding to the delay in milliseconds allowed for the controller to * run autonomously without * receiving any instruction from the control process * * @return YAPI::SUCCESS if the call succeeds. * * On failure, throws an exception or returns a negative error code. */ int set_failSafeTimeout(int newval); inline int setFailSafeTimeout(int newval) { return this->set_failSafeTimeout(newval); } string get_command(void); inline string command(void) { return this->get_command(); } int set_command(const string& newval); inline int setCommand(const string& newval) { return this->set_command(newval); } /** * Retrieves a motor for a given identifier. * The identifier can be specified using several formats: * * - FunctionLogicalName * - ModuleSerialNumber.FunctionIdentifier * - ModuleSerialNumber.FunctionLogicalName * - ModuleLogicalName.FunctionIdentifier * - ModuleLogicalName.FunctionLogicalName * * * This function does not require that the motor is online at the time * it is invoked. The returned object is nevertheless valid. * Use the method isOnline() to test if the motor is * indeed online at a given time. In case of ambiguity when looking for * a motor by logical name, no error is notified: the first instance * found is returned. The search is performed first by hardware name, * then by logical name. * * If a call to this object's is_online() method returns FALSE although * you are certain that the matching device is plugged, make sure that you did * call registerHub() at application initialization time. * * @param func : a string that uniquely characterizes the motor, for instance * MOTORCTL.motor. * * @return a YMotor object allowing you to drive the motor. */ static YMotor* FindMotor(string func); /** * Registers the callback function that is invoked on every change of advertised value. * The callback is invoked only during the execution of ySleep or yHandleEvents. * This provides control over the time when the callback is triggered. For good responsiveness, remember to call * one of these two functions periodically. To unregister a callback, pass a NULL pointer as argument. * * @param callback : the callback function to call, or a NULL pointer. The callback function should take two * arguments: the function object of which the value has changed, and the character string describing * the new advertised value. * @noreturn */ virtual int registerValueCallback(YMotorValueCallback callback); using YFunction::registerValueCallback; virtual int _invokeValueCallback(string value); /** * Rearms the controller failsafe timer. When the motor is running and the failsafe feature * is active, this function should be called periodically to prove that the control process * is running properly. Otherwise, the motor is automatically stopped after the specified * timeout. Calling a motor set function implicitly rearms the failsafe timer. */ virtual int keepALive(void); /** * Reset the controller state to IDLE. This function must be invoked explicitly * after any error condition is signaled. */ virtual int resetStatus(void); /** * Changes progressively the power sent to the motor for a specific duration. * * @param targetPower : desired motor power, in percents (between -100% and +100%) * @param delay : duration (in ms) of the transition * * @return YAPI::SUCCESS if the call succeeds. * * On failure, throws an exception or returns a negative error code. */ virtual int drivingForceMove(double targetPower,int delay); /** * Changes progressively the braking force applied to the motor for a specific duration. * * @param targetPower : desired braking force, in percents * @param delay : duration (in ms) of the transition * * @return YAPI::SUCCESS if the call succeeds. * * On failure, throws an exception or returns a negative error code. */ virtual int brakingForceMove(double targetPower,int delay); inline static YMotor *Find(string func) { return YMotor::FindMotor(func); } /** * Continues the enumeration of motors started using yFirstMotor(). * Caution: You can't make any assumption about the returned motors order. * If you want to find a specific a motor, use Motor.findMotor() * and a hardwareID or a logical name. * * @return a pointer to a YMotor object, corresponding to * a motor currently online, or a NULL pointer * if there are no more motors to enumerate. */ YMotor *nextMotor(void); inline YMotor *next(void) { return this->nextMotor();} /** * Starts the enumeration of motors currently accessible. * Use the method YMotor::nextMotor() to iterate on * next motors. * * @return a pointer to a YMotor object, corresponding to * the first motor currently online, or a NULL pointer * if there are none. */ static YMotor *FirstMotor(void); inline static YMotor *First(void) { return YMotor::FirstMotor();} #ifdef __BORLANDC__ #pragma option pop #endif //--- (end of YMotor accessors declaration) }; //--- (YMotor functions declaration) /** * Retrieves a motor for a given identifier. * The identifier can be specified using several formats: * * - FunctionLogicalName * - ModuleSerialNumber.FunctionIdentifier * - ModuleSerialNumber.FunctionLogicalName * - ModuleLogicalName.FunctionIdentifier * - ModuleLogicalName.FunctionLogicalName * * * This function does not require that the motor is online at the time * it is invoked. The returned object is nevertheless valid. * Use the method isOnline() to test if the motor is * indeed online at a given time. In case of ambiguity when looking for * a motor by logical name, no error is notified: the first instance * found is returned. The search is performed first by hardware name, * then by logical name. * * If a call to this object's is_online() method returns FALSE although * you are certain that the matching device is plugged, make sure that you did * call registerHub() at application initialization time. * * @param func : a string that uniquely characterizes the motor, for instance * MOTORCTL.motor. * * @return a YMotor object allowing you to drive the motor. */ inline YMotor *yFindMotor(const string& func) { return YMotor::FindMotor(func);} /** * Starts the enumeration of motors currently accessible. * Use the method YMotor::nextMotor() to iterate on * next motors. * * @return a pointer to a YMotor object, corresponding to * the first motor currently online, or a NULL pointer * if there are none. */ inline YMotor *yFirstMotor(void) { return YMotor::FirstMotor();} //--- (end of YMotor functions declaration) #ifdef YOCTOLIB_NAMESPACE // end of namespace definition } #endif #endif