#![cfg(feature = "quickcheck")] #[macro_use] extern crate quickcheck; extern crate petgraph; extern crate rand; #[macro_use] extern crate defmac; extern crate itertools; extern crate odds; mod utils; use utils::{Small, Tournament}; use odds::prelude::*; use std::collections::HashSet; use std::hash::Hash; use itertools::assert_equal; use itertools::cloned; use quickcheck::{Arbitrary, Gen}; use rand::Rng; use petgraph::algo::{ bellman_ford, condensation, dijkstra, find_negative_cycle, floyd_warshall, greedy_feedback_arc_set, greedy_matching, is_cyclic_directed, is_cyclic_undirected, is_isomorphic, is_isomorphic_matching, k_shortest_path, kosaraju_scc, maximum_matching, min_spanning_tree, tarjan_scc, toposort, Matching, }; use petgraph::data::FromElements; use petgraph::dot::{Config, Dot}; use petgraph::graph::{edge_index, node_index, IndexType}; use petgraph::graphmap::NodeTrait; use petgraph::operator::complement; use petgraph::prelude::*; use petgraph::visit::{ EdgeFiltered, EdgeRef, IntoEdgeReferences, IntoEdges, IntoNeighbors, IntoNodeIdentifiers, IntoNodeReferences, NodeCount, NodeIndexable, Reversed, Topo, VisitMap, Visitable, }; use petgraph::EdgeType; fn mst_graph(g: &Graph) -> Graph where Ty: EdgeType, Ix: IndexType, N: Clone, E: Clone + PartialOrd, { Graph::from_elements(min_spanning_tree(&g)) } use std::fmt; quickcheck! { fn mst_directed(g: Small>) -> bool { // filter out isolated nodes let no_singles = g.filter_map( |nx, w| g.neighbors_undirected(nx).next().map(|_| w), |_, w| Some(w)); for i in no_singles.node_indices() { assert!(no_singles.neighbors_undirected(i).count() > 0); } assert_eq!(no_singles.edge_count(), g.edge_count()); let mst = mst_graph(&no_singles); assert!(!is_cyclic_undirected(&mst)); true } } quickcheck! { fn mst_undirected(g: Graph<(), u32, Undirected>) -> bool { // filter out isolated nodes let no_singles = g.filter_map( |nx, w| g.neighbors_undirected(nx).next().map(|_| w), |_, w| Some(w)); for i in no_singles.node_indices() { assert!(no_singles.neighbors_undirected(i).count() > 0); } assert_eq!(no_singles.edge_count(), g.edge_count()); let mst = mst_graph(&no_singles); assert!(!is_cyclic_undirected(&mst)); true } } quickcheck! { fn reverse_undirected(g: Small>) -> bool { let mut h = (*g).clone(); h.reverse(); is_isomorphic(&*g, &h) } } fn assert_graph_consistent(g: &Graph) where Ty: EdgeType, Ix: IndexType, { assert_eq!(g.node_count(), g.node_indices().count()); assert_eq!(g.edge_count(), g.edge_indices().count()); for edge in g.raw_edges() { assert!( g.find_edge(edge.source(), edge.target()).is_some(), "Edge not in graph! {:?} to {:?}", edge.source(), edge.target() ); } } #[test] fn reverse_directed() { fn prop(mut g: Graph<(), (), Ty>) -> bool { let node_outdegrees = g .node_indices() .map(|i| g.neighbors_directed(i, Outgoing).count()) .collect::>(); let node_indegrees = g .node_indices() .map(|i| g.neighbors_directed(i, Incoming).count()) .collect::>(); g.reverse(); let new_outdegrees = g .node_indices() .map(|i| g.neighbors_directed(i, Outgoing).count()) .collect::>(); let new_indegrees = g .node_indices() .map(|i| g.neighbors_directed(i, Incoming).count()) .collect::>(); assert_eq!(node_outdegrees, new_indegrees); assert_eq!(node_indegrees, new_outdegrees); assert_graph_consistent(&g); true } quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>) -> bool); } #[test] fn graph_retain_nodes() { fn prop(mut g: Graph) -> bool { // Remove all negative nodes, these should be randomly spread let og = g.clone(); let nodes = g.node_count(); let num_negs = g.raw_nodes().iter().filter(|n| n.weight < 0).count(); let mut removed = 0; g.retain_nodes(|g, i| { let keep = g[i] >= 0; if !keep { removed += 1; } keep }); let num_negs_post = g.raw_nodes().iter().filter(|n| n.weight < 0).count(); let num_pos_post = g.raw_nodes().iter().filter(|n| n.weight >= 0).count(); assert_eq!(num_negs_post, 0); assert_eq!(removed, num_negs); assert_eq!(num_negs + g.node_count(), nodes); assert_eq!(num_pos_post, g.node_count()); // check against filter_map let filtered = og.filter_map( |_, w| if *w >= 0 { Some(*w) } else { None }, |_, w| Some(*w), ); assert_eq!(g.node_count(), filtered.node_count()); /* println!("Iso of graph with nodes={}, edges={}", g.node_count(), g.edge_count()); */ assert!(is_isomorphic_matching( &filtered, &g, PartialEq::eq, PartialEq::eq )); true } quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>) -> bool); quickcheck::quickcheck(prop as fn(Graph<_, _, Undirected>) -> bool); } #[test] fn graph_retain_edges() { fn prop(mut g: Graph<(), i32, Ty>) -> bool { // Remove all negative edges, these should be randomly spread let og = g.clone(); let edges = g.edge_count(); let num_negs = g.raw_edges().iter().filter(|n| n.weight < 0).count(); let mut removed = 0; g.retain_edges(|g, i| { let keep = g[i] >= 0; if !keep { removed += 1; } keep }); let num_negs_post = g.raw_edges().iter().filter(|n| n.weight < 0).count(); let num_pos_post = g.raw_edges().iter().filter(|n| n.weight >= 0).count(); assert_eq!(num_negs_post, 0); assert_eq!(removed, num_negs); assert_eq!(num_negs + g.edge_count(), edges); assert_eq!(num_pos_post, g.edge_count()); if og.edge_count() < 30 { // check against filter_map let filtered = og.filter_map( |_, w| Some(*w), |_, w| if *w >= 0 { Some(*w) } else { None }, ); assert_eq!(g.node_count(), filtered.node_count()); assert!(is_isomorphic(&filtered, &g)); } true } quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>) -> bool); quickcheck::quickcheck(prop as fn(Graph<_, _, Undirected>) -> bool); } #[test] fn stable_graph_retain_edges() { fn prop(mut g: StableGraph<(), i32, Ty>) -> bool { // Remove all negative edges, these should be randomly spread let og = g.clone(); let edges = g.edge_count(); let num_negs = g.edge_references().filter(|n| *n.weight() < 0).count(); let mut removed = 0; g.retain_edges(|g, i| { let keep = g[i] >= 0; if !keep { removed += 1; } keep }); let num_negs_post = g.edge_references().filter(|n| *n.weight() < 0).count(); let num_pos_post = g.edge_references().filter(|n| *n.weight() >= 0).count(); assert_eq!(num_negs_post, 0); assert_eq!(removed, num_negs); assert_eq!(num_negs + g.edge_count(), edges); assert_eq!(num_pos_post, g.edge_count()); if og.edge_count() < 30 { // check against filter_map let filtered = og.filter_map( |_, w| Some(*w), |_, w| if *w >= 0 { Some(*w) } else { None }, ); assert_eq!(g.node_count(), filtered.node_count()); } true } quickcheck::quickcheck(prop as fn(StableGraph<_, _, Directed>) -> bool); quickcheck::quickcheck(prop as fn(StableGraph<_, _, Undirected>) -> bool); } #[test] fn isomorphism_1() { // using small weights so that duplicates are likely fn prop(g: Small>) -> bool { let mut rng = rand::thread_rng(); // several trials of different isomorphisms of the same graph // mapping of node indices let mut map = g.node_indices().collect::>(); let mut ng = Graph::<_, _, Ty>::with_capacity(g.node_count(), g.edge_count()); for _ in 0..1 { rng.shuffle(&mut map); ng.clear(); for _ in g.node_indices() { ng.add_node(0); } // Assign node weights for i in g.node_indices() { ng[map[i.index()]] = g[i]; } // Add edges for i in g.edge_indices() { let (s, t) = g.edge_endpoints(i).unwrap(); ng.add_edge(map[s.index()], map[t.index()], g[i]); } if g.node_count() < 20 && g.edge_count() < 50 { assert!(is_isomorphic(&*g, &ng)); } assert!(is_isomorphic_matching( &*g, &ng, PartialEq::eq, PartialEq::eq )); } true } quickcheck::quickcheck(prop:: as fn(_) -> bool); quickcheck::quickcheck(prop:: as fn(_) -> bool); } #[test] fn isomorphism_modify() { // using small weights so that duplicates are likely fn prop(g: Small>, node: u8, edge: u8) -> bool { println!("graph {:#?}", g); let mut ng = (*g).clone(); let i = node_index(node as usize); let j = edge_index(edge as usize); if i.index() < g.node_count() { ng[i] = (g[i] == 0) as i16; } if j.index() < g.edge_count() { ng[j] = (g[j] == 0) as i8; } if i.index() < g.node_count() || j.index() < g.edge_count() { assert!(!is_isomorphic_matching( &*g, &ng, PartialEq::eq, PartialEq::eq )); } else { assert!(is_isomorphic_matching( &*g, &ng, PartialEq::eq, PartialEq::eq )); } true } quickcheck::quickcheck(prop:: as fn(_, _, _) -> bool); quickcheck::quickcheck(prop:: as fn(_, _, _) -> bool); } #[test] fn graph_remove_edge() { fn prop(mut g: Graph<(), (), Ty>, a: u8, b: u8) -> bool { let a = node_index(a as usize); let b = node_index(b as usize); let edge = g.find_edge(a, b); if !g.is_directed() { assert_eq!(edge.is_some(), g.find_edge(b, a).is_some()); } if let Some(ex) = edge { assert!(g.remove_edge(ex).is_some()); } assert_graph_consistent(&g); assert!(g.find_edge(a, b).is_none()); assert!(g.neighbors(a).find(|x| *x == b).is_none()); if !g.is_directed() { assert!(g.neighbors(b).find(|x| *x == a).is_none()); } true } quickcheck::quickcheck(prop as fn(Graph<_, _, Undirected>, _, _) -> bool); quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>, _, _) -> bool); } #[cfg(feature = "stable_graph")] #[test] fn stable_graph_remove_edge() { fn prop(mut g: StableGraph<(), (), Ty>, a: u8, b: u8) -> bool { let a = node_index(a as usize); let b = node_index(b as usize); let edge = g.find_edge(a, b); if !g.is_directed() { assert_eq!(edge.is_some(), g.find_edge(b, a).is_some()); } if let Some(ex) = edge { assert!(g.remove_edge(ex).is_some()); } //assert_graph_consistent(&g); assert!(g.find_edge(a, b).is_none()); assert!(g.neighbors(a).find(|x| *x == b).is_none()); if !g.is_directed() { assert!(g.find_edge(b, a).is_none()); assert!(g.neighbors(b).find(|x| *x == a).is_none()); } true } quickcheck::quickcheck(prop as fn(StableGraph<_, _, Undirected>, _, _) -> bool); quickcheck::quickcheck(prop as fn(StableGraph<_, _, Directed>, _, _) -> bool); } #[cfg(feature = "stable_graph")] #[test] fn stable_graph_add_remove_edges() { fn prop(mut g: StableGraph<(), (), Ty>, edges: Vec<(u8, u8)>) -> bool { for &(a, b) in &edges { let a = node_index(a as usize); let b = node_index(b as usize); let edge = g.find_edge(a, b); if edge.is_none() && g.contains_node(a) && g.contains_node(b) { let _index = g.add_edge(a, b, ()); continue; } if !g.is_directed() { assert_eq!(edge.is_some(), g.find_edge(b, a).is_some()); } if let Some(ex) = edge { assert!(g.remove_edge(ex).is_some()); } //assert_graph_consistent(&g); assert!( g.find_edge(a, b).is_none(), "failed to remove edge {:?} from graph {:?}", (a, b), g ); assert!(g.neighbors(a).find(|x| *x == b).is_none()); if !g.is_directed() { assert!(g.find_edge(b, a).is_none()); assert!(g.neighbors(b).find(|x| *x == a).is_none()); } } true } quickcheck::quickcheck(prop as fn(StableGraph<_, _, Undirected>, _) -> bool); quickcheck::quickcheck(prop as fn(StableGraph<_, _, Directed>, _) -> bool); } fn assert_graphmap_consistent(g: &GraphMap) where Ty: EdgeType, N: NodeTrait + fmt::Debug, { for (a, b, _weight) in g.all_edges() { assert!( g.contains_edge(a, b), "Edge not in graph! {:?} to {:?}", a, b ); assert!( g.neighbors(a).find(|x| *x == b).is_some(), "Edge {:?} not in neighbor list for {:?}", (a, b), a ); if !g.is_directed() { assert!( g.neighbors(b).find(|x| *x == a).is_some(), "Edge {:?} not in neighbor list for {:?}", (b, a), b ); } } } #[test] fn graphmap_remove() { fn prop(mut g: GraphMap, a: i8, b: i8) -> bool { //if g.edge_count() > 20 { return true; } assert_graphmap_consistent(&g); let contains = g.contains_edge(a, b); if !g.is_directed() { assert_eq!(contains, g.contains_edge(b, a)); } assert_eq!(g.remove_edge(a, b).is_some(), contains); assert!(!g.contains_edge(a, b) && g.neighbors(a).find(|x| *x == b).is_none()); //(g.is_directed() || g.neighbors(b).find(|x| *x == a).is_none())); assert!(g.remove_edge(a, b).is_none()); assert_graphmap_consistent(&g); true } quickcheck::quickcheck(prop as fn(DiGraphMap<_, _>, _, _) -> bool); quickcheck::quickcheck(prop as fn(UnGraphMap<_, _>, _, _) -> bool); } #[test] fn graphmap_add_remove() { fn prop(mut g: UnGraphMap, a: i8, b: i8) -> bool { assert_eq!(g.contains_edge(a, b), g.add_edge(a, b, ()).is_some()); g.remove_edge(a, b); !g.contains_edge(a, b) && g.neighbors(a).find(|x| *x == b).is_none() && g.neighbors(b).find(|x| *x == a).is_none() } quickcheck::quickcheck(prop as fn(_, _, _) -> bool); } fn sort_sccs(v: &mut [Vec]) { for scc in &mut *v { scc.sort(); } v.sort(); } quickcheck! { fn graph_sccs(g: Graph<(), ()>) -> bool { let mut sccs = kosaraju_scc(&g); let mut tsccs = tarjan_scc(&g); sort_sccs(&mut sccs); sort_sccs(&mut tsccs); if sccs != tsccs { println!("{:?}", Dot::with_config(&g, &[Config::EdgeNoLabel, Config::NodeIndexLabel])); println!("Sccs {:?}", sccs); println!("Sccs (Tarjan) {:?}", tsccs); return false; } true } } quickcheck! { fn kosaraju_scc_is_topo_sort(g: Graph<(), ()>) -> bool { let tsccs = kosaraju_scc(&g); let firsts = tsccs.iter().rev().map(|v| v[0]).collect::>(); subset_is_topo_order(&g, &firsts) } } quickcheck! { fn tarjan_scc_is_topo_sort(g: Graph<(), ()>) -> bool { let tsccs = tarjan_scc(&g); let firsts = tsccs.iter().rev().map(|v| v[0]).collect::>(); subset_is_topo_order(&g, &firsts) } } quickcheck! { // Reversed edges gives the same sccs (when sorted) fn graph_reverse_sccs(g: Graph<(), ()>) -> bool { let mut sccs = kosaraju_scc(&g); let mut tsccs = kosaraju_scc(Reversed(&g)); sort_sccs(&mut sccs); sort_sccs(&mut tsccs); if sccs != tsccs { println!("{:?}", Dot::with_config(&g, &[Config::EdgeNoLabel, Config::NodeIndexLabel])); println!("Sccs {:?}", sccs); println!("Sccs (Reversed) {:?}", tsccs); return false; } true } } quickcheck! { // Reversed edges gives the same sccs (when sorted) fn graphmap_reverse_sccs(g: DiGraphMap) -> bool { let mut sccs = kosaraju_scc(&g); let mut tsccs = kosaraju_scc(Reversed(&g)); sort_sccs(&mut sccs); sort_sccs(&mut tsccs); if sccs != tsccs { println!("{:?}", Dot::with_config(&g, &[Config::EdgeNoLabel, Config::NodeIndexLabel])); println!("Sccs {:?}", sccs); println!("Sccs (Reversed) {:?}", tsccs); return false; } true } } #[test] fn graph_condensation_acyclic() { fn prop(g: Graph<(), ()>) -> bool { !is_cyclic_directed(&condensation(g, /* make_acyclic */ true)) } quickcheck::quickcheck(prop as fn(_) -> bool); } #[derive(Debug, Clone)] struct DAG(Graph); impl Arbitrary for DAG { fn arbitrary(g: &mut G) -> Self { let nodes = usize::arbitrary(g); if nodes == 0 { return DAG(Graph::with_capacity(0, 0)); } let split = g.gen_range(0., 1.); let max_width = f64::sqrt(nodes as f64) as usize; let tall = (max_width as f64 * split) as usize; let fat = max_width - tall; let edge_prob = 1. - (1. - g.gen_range(0., 1.)) * (1. - g.gen_range(0., 1.)); let edges = ((nodes as f64).powi(2) * edge_prob) as usize; let mut gr = Graph::with_capacity(nodes, edges); let mut nodes = 0; for _ in 0..tall { let cur_nodes = g.gen_range(0, fat); for _ in 0..cur_nodes { gr.add_node(N::default()); } for j in 0..nodes { for k in 0..cur_nodes { if g.gen_range(0., 1.) < edge_prob { gr.add_edge(NodeIndex::new(j), NodeIndex::new(k + nodes), ()); } } } nodes += cur_nodes; } DAG(gr) } // shrink the graph by splitting it in two by a very // simple algorithm, just even and odd node indices fn shrink(&self) -> Box> { let self_ = self.clone(); Box::new((0..2).filter_map(move |x| { let gr = self_.0.filter_map( |i, w| { if i.index() % 2 == x { Some(w.clone()) } else { None } }, |_, w| Some(w.clone()), ); // make sure we shrink if gr.node_count() < self_.0.node_count() { Some(DAG(gr)) } else { None } })) } } fn is_topo_order(gr: &Graph, order: &[NodeIndex]) -> bool { if gr.node_count() != order.len() { println!( "Graph ({}) and count ({}) had different amount of nodes.", gr.node_count(), order.len() ); return false; } // check all the edges of the graph for edge in gr.raw_edges() { let a = edge.source(); let b = edge.target(); let ai = order.find(&a).unwrap(); let bi = order.find(&b).unwrap(); if ai >= bi { println!("{:?} > {:?} ", a, b); return false; } } true } fn subset_is_topo_order(gr: &Graph, order: &[NodeIndex]) -> bool { if gr.node_count() < order.len() { println!( "Graph (len={}) had less nodes than order (len={})", gr.node_count(), order.len() ); return false; } // check all the edges of the graph for edge in gr.raw_edges() { let a = edge.source(); let b = edge.target(); if a == b { continue; } // skip those that are not in the subset let ai = match order.find(&a) { Some(i) => i, None => continue, }; let bi = match order.find(&b) { Some(i) => i, None => continue, }; if ai >= bi { println!("{:?} > {:?} ", a, b); return false; } } true } #[test] fn full_topo() { fn prop(DAG(gr): DAG<()>) -> bool { let order = toposort(&gr, None).unwrap(); is_topo_order(&gr, &order) } quickcheck::quickcheck(prop as fn(_) -> bool); } #[test] fn full_topo_generic() { fn prop_generic(DAG(mut gr): DAG) -> bool { assert!(!is_cyclic_directed(&gr)); let mut index = 0; let mut topo = Topo::new(&gr); while let Some(nx) = topo.next(&gr) { gr[nx] = index; index += 1; } let mut order = Vec::new(); index = 0; let mut topo = Topo::new(&gr); while let Some(nx) = topo.next(&gr) { order.push(nx); assert_eq!(gr[nx], index); index += 1; } if !is_topo_order(&gr, &order) { println!("{:?}", gr); return false; } { order.clear(); let mut topo = Topo::new(&gr); while let Some(nx) = topo.next(&gr) { order.push(nx); } if !is_topo_order(&gr, &order) { println!("{:?}", gr); return false; } } true } quickcheck::quickcheck(prop_generic as fn(_) -> bool); } quickcheck! { // checks that the distances computed by dijkstra satisfy the triangle // inequality. fn dijkstra_triangle_ineq(g: Graph, node: usize) -> bool { if g.node_count() == 0 { return true; } let v = node_index(node % g.node_count()); let distances = dijkstra(&g, v, None, |e| *e.weight()); for v2 in distances.keys() { let dv2 = distances[v2]; // triangle inequality: // d(v,u) <= d(v,v2) + w(v2,u) for edge in g.edges(*v2) { let u = edge.target(); let w = edge.weight(); if distances.contains_key(&u) && distances[&u] > dv2 + w { return false; } } } true } } quickcheck! { // checks that the distances computed by k'th shortest path is always greater or equal compared to their dijkstra computation fn k_shortest_path_(g: Graph, node: usize) -> bool { if g.node_count() == 0 { return true; } let v = node_index(node % g.node_count()); let second_best_distances = k_shortest_path(&g, v, None, 2, |e| *e.weight()); let dijkstra_distances = dijkstra(&g, v, None, |e| *e.weight()); for v in second_best_distances.keys() { if second_best_distances[&v] < dijkstra_distances[&v] { return false; } } true } } quickcheck! { // checks floyd_warshall against dijkstra results fn floyd_warshall_(g: Graph) -> bool { if g.node_count() == 0 { return true; } let fw_res = floyd_warshall(&g, |e| *e.weight()).unwrap(); for node1 in g.node_identifiers() { let dijkstra_res = dijkstra(&g, node1, None, |e| *e.weight()); for node2 in g.node_identifiers() { // if dijkstra found a path then the results must be same if let Some(distance) = dijkstra_res.get(&node2) { let floyd_distance = fw_res.get(&(node1, node2)).unwrap(); if distance != floyd_distance { return false; } } else { // if there are no path between two nodes then floyd_warshall will return maximum value possible if *fw_res.get(&(node1, node2)).unwrap() != u32::MAX { return false; } } } } true } } quickcheck! { // checks that the complement of the complement is the same as the input if the input does not contain self-loops fn complement_(g: Graph, _node: usize) -> bool { if g.node_count() == 0 { return true; } for x in g.node_indices() { if g.contains_edge(x, x) { return true; } } let mut complement_graph: Graph = Graph::new(); let mut result: Graph = Graph::new(); complement(&g, &mut complement_graph, 0); complement(&complement_graph, &mut result, 0); for x in g.node_indices() { for y in g.node_indices() { if g.contains_edge(x, y) != result.contains_edge(x, y){ return false; } } } true } } fn set(iter: I) -> HashSet where I: IntoIterator, I::Item: Hash + Eq, { iter.into_iter().collect() } quickcheck! { fn dfs_visit(gr: Graph<(), ()>, node: usize) -> bool { use petgraph::visit::{Visitable, VisitMap}; use petgraph::visit::DfsEvent::*; use petgraph::visit::{Time, depth_first_search}; if gr.node_count() == 0 { return true; } let start_node = node_index(node % gr.node_count()); let invalid_time = Time(!0); let mut discover_time = vec![invalid_time; gr.node_count()]; let mut finish_time = vec![invalid_time; gr.node_count()]; let mut has_tree_edge = gr.visit_map(); let mut edges = HashSet::new(); depth_first_search(&gr, Some(start_node).into_iter().chain(gr.node_indices()), |evt| { match evt { Discover(n, t) => discover_time[n.index()] = t, Finish(n, t) => finish_time[n.index()] = t, TreeEdge(u, v) => { // v is an ancestor of u assert!(has_tree_edge.visit(v), "Two tree edges to {:?}!", v); assert!(discover_time[v.index()] == invalid_time); assert!(discover_time[u.index()] != invalid_time); assert!(finish_time[u.index()] == invalid_time); edges.insert((u, v)); } BackEdge(u, v) => { // u is an ancestor of v assert!(discover_time[v.index()] != invalid_time); assert!(finish_time[v.index()] == invalid_time); edges.insert((u, v)); } CrossForwardEdge(u, v) => { edges.insert((u, v)); } } }); assert!(discover_time.iter().all(|x| *x != invalid_time)); assert!(finish_time.iter().all(|x| *x != invalid_time)); assert_eq!(edges.len(), gr.edge_count()); assert_eq!(edges, set(gr.edge_references().map(|e| (e.source(), e.target())))); true } } quickcheck! { fn test_bellman_ford(gr: Graph<(), f32>) -> bool { let mut gr = gr; for elt in gr.edge_weights_mut() { *elt = elt.abs(); } if gr.node_count() == 0 { return true; } for (i, start) in gr.node_indices().enumerate() { if i >= 10 { break; } // testing all is too slow bellman_ford(&gr, start).unwrap(); } true } } quickcheck! { fn test_find_negative_cycle(gr: Graph<(), f32>) -> bool { let gr = gr; if gr.node_count() == 0 { return true; } for (i, start) in gr.node_indices().enumerate() { if i >= 10 { break; } // testing all is too slow if let Some(path) = find_negative_cycle(&gr, start) { assert!(path.len() >= 1); } } true } } quickcheck! { fn test_bellman_ford_undir(gr: Graph<(), f32, Undirected>) -> bool { let mut gr = gr; for elt in gr.edge_weights_mut() { *elt = elt.abs(); } if gr.node_count() == 0 { return true; } for (i, start) in gr.node_indices().enumerate() { if i >= 10 { break; } // testing all is too slow bellman_ford(&gr, start).unwrap(); } true } } defmac!(iter_eq a, b => a.eq(b)); defmac!(nodes_eq ref a, ref b => a.node_references().eq(b.node_references())); defmac!(edgew_eq ref a, ref b => a.edge_references().eq(b.edge_references())); defmac!(edges_eq ref a, ref b => iter_eq!( a.edge_references().map(|e| (e.source(), e.target())), b.edge_references().map(|e| (e.source(), e.target())))); quickcheck! { fn test_di_from(gr1: DiGraph) -> () { let sgr = StableGraph::from(gr1.clone()); let gr2 = Graph::from(sgr); assert!(nodes_eq!(&gr1, &gr2)); assert!(edgew_eq!(&gr1, &gr2)); assert!(edges_eq!(&gr1, &gr2)); } fn test_un_from(gr1: UnGraph) -> () { let sgr = StableGraph::from(gr1.clone()); let gr2 = Graph::from(sgr); assert!(nodes_eq!(&gr1, &gr2)); assert!(edgew_eq!(&gr1, &gr2)); assert!(edges_eq!(&gr1, &gr2)); } fn test_graph_from_stable_graph(gr1: StableDiGraph) -> () { let mut gr1 = gr1; let gr2 = Graph::from(gr1.clone()); // renumber the stablegraph nodes and put the new index in the // associated data let mut index = 0; for i in 0..gr1.node_bound() { let ni = node_index(i); if gr1.contains_node(ni) { gr1[ni] = index; index += 1; } } if let Some(edge_bound) = gr1.edge_references().next_back() .map(|ed| ed.id().index() + 1) { index = 0; for i in 0..edge_bound { let ni = edge_index(i); if gr1.edge_weight(ni).is_some() { gr1[ni] = index; index += 1; } } } assert_equal( // Remap the stablegraph to compact indices gr1.edge_references().map(|ed| (edge_index(*ed.weight()), gr1[ed.source()], gr1[ed.target()])), gr2.edge_references().map(|ed| (ed.id(), ed.source().index(), ed.target().index())) ); } fn stable_di_graph_map_id(gr1: StableDiGraph) -> () { let gr2 = gr1.map(|_, &nw| nw, |_, &ew| ew); assert!(nodes_eq!(&gr1, &gr2)); assert!(edgew_eq!(&gr1, &gr2)); assert!(edges_eq!(&gr1, &gr2)); } fn stable_un_graph_map_id(gr1: StableUnGraph) -> () { let gr2 = gr1.map(|_, &nw| nw, |_, &ew| ew); assert!(nodes_eq!(&gr1, &gr2)); assert!(edgew_eq!(&gr1, &gr2)); assert!(edges_eq!(&gr1, &gr2)); } fn stable_di_graph_filter_map_id(gr1: StableDiGraph) -> () { let gr2 = gr1.filter_map(|_, &nw| Some(nw), |_, &ew| Some(ew)); assert!(nodes_eq!(&gr1, &gr2)); assert!(edgew_eq!(&gr1, &gr2)); assert!(edges_eq!(&gr1, &gr2)); } fn test_stable_un_graph_filter_map_id(gr1: StableUnGraph) -> () { let gr2 = gr1.filter_map(|_, &nw| Some(nw), |_, &ew| Some(ew)); assert!(nodes_eq!(&gr1, &gr2)); assert!(edgew_eq!(&gr1, &gr2)); assert!(edges_eq!(&gr1, &gr2)); } fn stable_di_graph_filter_map_remove(gr1: Small>, nodes: Vec, edges: Vec) -> () { let gr2 = gr1.filter_map(|ix, &nw| { if !nodes.contains(&ix.index()) { Some(nw) } else { None } }, |ix, &ew| { if !edges.contains(&ix.index()) { Some(ew) } else { None } }); let check_nodes = &set(gr1.node_indices()) - &set(cloned(&nodes).map(node_index)); let mut check_edges = &set(gr1.edge_indices()) - &set(cloned(&edges).map(edge_index)); // remove all edges with endpoint in removed nodes for edge in gr1.edge_references() { if nodes.contains(&edge.source().index()) || nodes.contains(&edge.target().index()) { check_edges.remove(&edge.id()); } } // assert maintained for i in check_nodes { assert_eq!(gr1[i], gr2[i]); } for i in check_edges { assert_eq!(gr1[i], gr2[i]); assert_eq!(gr1.edge_endpoints(i), gr2.edge_endpoints(i)); } // assert removals for i in nodes { assert!(gr2.node_weight(node_index(i)).is_none()); } for i in edges { assert!(gr2.edge_weight(edge_index(i)).is_none()); } } } fn naive_closure_foreach(g: G, mut f: F) where G: Visitable + IntoNeighbors + IntoNodeIdentifiers, F: FnMut(G::NodeId, G::NodeId), { let mut dfs = Dfs::empty(&g); for i in g.node_identifiers() { dfs.reset(&g); dfs.move_to(i); while let Some(nx) = dfs.next(&g) { if i != nx { f(i, nx); } } } } fn naive_closure(g: G) -> Vec<(G::NodeId, G::NodeId)> where G: Visitable + IntoNodeIdentifiers + IntoNeighbors, { let mut res = Vec::new(); naive_closure_foreach(g, |a, b| res.push((a, b))); res } fn naive_closure_edgecount(g: G) -> usize where G: Visitable + IntoNodeIdentifiers + IntoNeighbors, { let mut res = 0; naive_closure_foreach(g, |_, _| res += 1); res } quickcheck! { fn test_tred(g: DAG<()>) -> bool { let acyclic = g.0; println!("acyclic graph {:#?}", &acyclic); let toposort = toposort(&acyclic, None).unwrap(); println!("Toposort:"); for (new, old) in toposort.iter().enumerate() { println!("{} -> {}", old.index(), new); } let (toposorted, revtopo): (petgraph::adj::List<(), usize>, _) = petgraph::algo::tred::dag_to_toposorted_adjacency_list(&acyclic, &toposort); println!("checking revtopo"); for (i, ix) in toposort.iter().enumerate() { assert_eq!(i, revtopo[ix.index()]); } println!("toposorted adjacency list: {:#?}", &toposorted); let (tred, tclos) = petgraph::algo::tred::dag_transitive_reduction_closure(&toposorted); println!("tred: {:#?}", &tred); println!("tclos: {:#?}", &tclos); if tred.node_count() != tclos.node_count() { println!("Different node count"); return false; } if acyclic.node_count() != tclos.node_count() { println!("Different node count from original graph"); return false; } // check the closure let mut clos_edges: Vec<(_, _)> = tclos.edge_references().map(|i| (i.source(), i.target())).collect(); clos_edges.sort(); let mut tred_closure = naive_closure(&tred); tred_closure.sort(); if tred_closure != clos_edges { println!("tclos is not the transitive closure of tred"); return false } // check the transitive reduction is a transitive reduction for i in tred.edge_references() { let filtered = EdgeFiltered::from_fn(&tred, |edge| { edge.source() !=i.source() || edge.target() != i.target() }); let new = naive_closure_edgecount(&filtered); if new >= clos_edges.len() { println!("when removing ({} -> {}) the transitive closure does not shrink", i.source().index(), i.target().index()); return false } } // check that the transitive reduction is included in the original graph for i in tred.edge_references() { if acyclic.find_edge(toposort[i.source().index()], toposort[i.target().index()]).is_none() { println!("tred is not included in the original graph"); return false } } println!("ok!"); true } } quickcheck! { fn greedy_fas_remaining_graph_is_acyclic(g: StableDiGraph<(), ()>) -> bool { let mut g = g; let fas: Vec = greedy_feedback_arc_set(&g).map(|e| e.id()).collect(); for edge_id in fas { g.remove_edge(edge_id); } !is_cyclic_directed(&g) } /// Assert that the size of the feedback arc set of a tournament does not exceed /// **|E| / 2 - |V| / 6** fn greedy_fas_performance_within_bound(t: Tournament<(), ()>) -> bool { let Tournament(g) = t; let expected_bound = if g.node_count() < 2 { 0 } else { ((g.edge_count() as f64) / 2.0 - (g.node_count() as f64) / 6.0) as usize }; let fas_size = greedy_feedback_arc_set(&g).count(); fas_size <= expected_bound } } fn is_valid_matching(m: &Matching) -> bool { // A set of edges is a matching if no two edges from the matching share an // endpoint. for (s1, t1) in m.edges() { for (s2, t2) in m.edges() { if s1 == s2 && t1 == t2 { continue; } if s1 == s2 || s1 == t2 || t1 == s2 || t1 == t2 { // Two edges share an endpoint. return false; } } } true } fn is_maximum_matching( g: G, m: &Matching, ) -> bool { // Berge's lemma: a matching is maximum iff there is no augmenting path (a // path that starts and ends in unmatched vertices, and alternates between // matched and unmatched edges). Thus if we find an augmenting path, the // matching is not maximum. // // Start with an unmatched node and traverse the graph alternating matched // and unmatched edges. If an unmatched node is found, then an augmenting // path was found. for unmatched in g.node_identifiers().filter(|u| !m.contains_node(*u)) { let visited = &mut g.visit_map(); let mut stack = Vec::new(); stack.push((unmatched, false)); while let Some((u, do_matched_edges)) = stack.pop() { if visited.visit(u) { for e in g.edges(u) { if e.source() == e.target() { // Ignore self-loops. continue; } let is_matched = m.contains_edge(e.source(), e.target()); if do_matched_edges && is_matched || !do_matched_edges && !is_matched { stack.push((e.target(), !do_matched_edges)); // Found another free node (other than the starting one) // that is unmatched - an augmenting path. if !is_matched && !m.contains_node(e.target()) && e.target() != unmatched { return false; } } } } } } true } fn is_perfect_matching(g: G, m: &Matching) -> bool { // By definition. g.node_count() % 2 == 0 && m.edges().count() == g.node_count() / 2 } quickcheck! { fn matching(g: Graph<(), (), Undirected>) -> bool { let m1 = greedy_matching(&g); let m2 = maximum_matching(&g); assert!(is_valid_matching(&m1), "greedy_matching returned an invalid matching"); assert!(is_valid_matching(&m2), "maximum_matching returned an invalid matching"); assert!(is_maximum_matching(&g, &m2), "maximum_matching returned a matching that is not maximum"); assert_eq!(m1.is_perfect(), is_perfect_matching(&g, &m1), "greedy_matching incorrectly determined whether the matching is perfect"); assert_eq!(m2.is_perfect(), is_perfect_matching(&g, &m2), "maximum_matching incorrectly determined whether the matching is perfect"); true } fn matching_in_stable_graph(g: StableGraph<(), (), Undirected>) -> bool { let m1 = greedy_matching(&g); let m2 = maximum_matching(&g); assert!(is_valid_matching(&m1), "greedy_matching returned an invalid matching"); assert!(is_valid_matching(&m2), "maximum_matching returned an invalid matching"); assert!(is_maximum_matching(&g, &m2), "maximum_matching returned a matching that is not maximum"); assert_eq!(m1.is_perfect(), is_perfect_matching(&g, &m1), "greedy_matching incorrectly determined whether the matching is perfect"); assert_eq!(m2.is_perfect(), is_perfect_matching(&g, &m2), "maximum_matching incorrectly determined whether the matching is perfect"); true } }