# ZeNu Layer ZeNu Layer is a collection of neural network layers implemented in Rust. It provides building blocks for constructing neural networks and integrates with the ZeNu deep learning library. ## Features - Various layer types, including fully connected (linear) layers - Layer parameter initialization - Forward pass computation - Integration with ZeNu Autograd for automatic differentiation ## Getting Started To use ZeNu Layer in your Rust project, add the following to your `Cargo.toml` file: ```toml [dependencies] zenu-layer = "0.1.0" ``` Here's a simple example of using a linear layer from ZeNu Layer: ```rust use zenu_autograd::creator::from_vec::from_vec; use zenu_layer::layers::linear::Linear; use zenu_layer::Layer; fn main() { // Create a new linear layer with input dimension 3 and output dimension 2 let mut linear_layer = Linear::new(3, 2); // Initialize the layer parameters with a random seed linear_layer.init_parameters(Some(42)); // Create input data as a Variable let input = from_vec(vec![1., 2., 3.], [1, 3]); // Perform a forward pass through the layer let output = linear_layer.call(input); // Access the layer parameters let parameters = linear_layer.parameters(); } ``` For more details and examples, please refer to the [documentation](https://docs.rs/zenu-layer). ## License ZeNu Layer is licensed under the [MIT License](LICENSE).