// Tests adapted from https://github.com/worldcoin/semaphore-rs/blob/d462a4372f1fd9c27610f2acfe4841fab1d396aa/src/merkle_tree.rs #[cfg(test)] pub mod test { use hex_literal::hex; use std::{fmt::Display, str::FromStr}; use tiny_keccak::{Hasher as _, Keccak}; use zerokit_utils::{ FullMerkleConfig, FullMerkleTree, Hasher, OptimalMerkleConfig, OptimalMerkleTree, ZerokitMerkleProof, ZerokitMerkleTree, }; #[derive(Clone, Copy, Eq, PartialEq)] struct Keccak256; #[derive(Clone, Copy, Eq, PartialEq, Debug, Default)] struct TestFr([u8; 32]); impl Hasher for Keccak256 { type Fr = TestFr; fn default_leaf() -> Self::Fr { TestFr([0; 32]) } fn hash(inputs: &[Self::Fr]) -> Self::Fr { let mut output = [0; 32]; let mut hasher = Keccak::v256(); for element in inputs { hasher.update(element.0.as_slice()); } hasher.finalize(&mut output); TestFr(output) } } impl Display for TestFr { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "{}", hex::encode(self.0.as_slice())) } } impl FromStr for TestFr { type Err = std::string::FromUtf8Error; fn from_str(s: &str) -> Result { Ok(TestFr(s.as_bytes().try_into().unwrap())) } } impl From for TestFr { fn from(value: u32) -> Self { let mut bytes: Vec = vec![0; 28]; bytes.extend_from_slice(&value.to_be_bytes()); TestFr(bytes.as_slice().try_into().unwrap()) } } const DEFAULT_DEPTH: usize = 2; fn default_full_merkle_tree(depth: usize) -> FullMerkleTree { FullMerkleTree::::new(depth, TestFr([0; 32]), FullMerkleConfig::default()) .unwrap() } fn default_optimal_merkle_tree(depth: usize) -> OptimalMerkleTree { OptimalMerkleTree::::new(depth, TestFr([0; 32]), OptimalMerkleConfig::default()) .unwrap() } #[test] fn test_root() { let default_tree_root = TestFr(hex!( "b4c11951957c6f8f642c4af61cd6b24640fec6dc7fc607ee8206a99e92410d30" )); let roots = [ hex!("c1ba1812ff680ce84c1d5b4f1087eeb08147a4d510f3496b2849df3a73f5af95"), hex!("893760ec5b5bee236f29e85aef64f17139c3c1b7ff24ce64eb6315fca0f2485b"), hex!("222ff5e0b5877792c2bc1670e2ccd0c2c97cd7bb1672a57d598db05092d3d72c"), hex!("a9bb8c3f1f12e9aa903a50c47f314b57610a3ab32f2d463293f58836def38d36"), ] .map(TestFr); let nof_leaves = 4; let leaves: Vec = (1..=nof_leaves as u32).map(TestFr::from).collect(); let mut tree = default_full_merkle_tree(DEFAULT_DEPTH); assert_eq!(tree.root(), default_tree_root); for i in 0..nof_leaves { tree.set(i, leaves[i]).unwrap(); assert_eq!(tree.root(), roots[i]); } let mut tree = default_optimal_merkle_tree(DEFAULT_DEPTH); assert_eq!(tree.root(), default_tree_root); for i in 0..nof_leaves { tree.set(i, leaves[i]).unwrap(); assert_eq!(tree.root(), roots[i]); } } #[test] fn test_get_empty_leaves_indices() { let depth = 4; let nof_leaves: usize = 1 << (depth - 1); let leaves: Vec = (0..nof_leaves as u32).map(TestFr::from).collect(); let leaves_2: Vec = (0u32..2).map(TestFr::from).collect(); let leaves_4: Vec = (0u32..4).map(TestFr::from).collect(); let mut tree_full = default_full_merkle_tree(depth); let _ = tree_full.set_range(0, leaves.clone()); assert!(tree_full.get_empty_leaves_indices().is_empty()); let mut vec_idxs = Vec::new(); for i in 0..nof_leaves { vec_idxs.push(i); let _ = tree_full.delete(i); assert_eq!(tree_full.get_empty_leaves_indices(), vec_idxs); } for i in (0..nof_leaves).rev() { vec_idxs.pop(); let _ = tree_full.set(i, leaves[i]); assert_eq!(tree_full.get_empty_leaves_indices(), vec_idxs); } // Check situation when the number of items to insert is less than the number of items to delete tree_full .override_range(0, leaves_2.clone(), [0, 1, 2, 3]) .unwrap(); // check if the indexes for write and delete are the same tree_full .override_range(0, leaves_4.clone(), [0, 1, 2, 3]) .unwrap(); assert_eq!(tree_full.get_empty_leaves_indices(), vec![]); // check if indexes for deletion are before indexes for overwriting tree_full .override_range(4, leaves_4.clone(), [0, 1, 2, 3]) .unwrap(); assert_eq!(tree_full.get_empty_leaves_indices(), vec![0, 1, 2, 3]); // check if the indices for write and delete do not overlap completely tree_full .override_range(2, leaves_4.clone(), [0, 1, 2, 3]) .unwrap(); assert_eq!(tree_full.get_empty_leaves_indices(), vec![0, 1]); //// Optimal Merkle Tree Trest let mut tree_opt = default_optimal_merkle_tree(depth); let _ = tree_opt.set_range(0, leaves.clone()); assert!(tree_opt.get_empty_leaves_indices().is_empty()); let mut vec_idxs = Vec::new(); for i in 0..nof_leaves { vec_idxs.push(i); let _ = tree_opt.delete(i); assert_eq!(tree_opt.get_empty_leaves_indices(), vec_idxs); } for i in (0..nof_leaves).rev() { vec_idxs.pop(); let _ = tree_opt.set(i, leaves[i]); assert_eq!(tree_opt.get_empty_leaves_indices(), vec_idxs); } // Check situation when the number of items to insert is less than the number of items to delete tree_opt .override_range(0, leaves_2.clone(), [0, 1, 2, 3]) .unwrap(); // check if the indexes for write and delete are the same tree_opt .override_range(0, leaves_4.clone(), [0, 1, 2, 3]) .unwrap(); assert_eq!(tree_opt.get_empty_leaves_indices(), vec![]); // check if indexes for deletion are before indexes for overwriting tree_opt .override_range(4, leaves_4.clone(), [0, 1, 2, 3]) .unwrap(); assert_eq!(tree_opt.get_empty_leaves_indices(), vec![0, 1, 2, 3]); // check if the indices for write and delete do not overlap completely tree_opt .override_range(2, leaves_4.clone(), [0, 1, 2, 3]) .unwrap(); assert_eq!(tree_opt.get_empty_leaves_indices(), vec![0, 1]); } #[test] fn test_subtree_root() { let depth = 3; let nof_leaves: usize = 6; let leaves: Vec = (0..nof_leaves as u32).map(TestFr::from).collect(); let mut tree_full = default_optimal_merkle_tree(depth); let _ = tree_full.set_range(0, leaves.iter().cloned()); for i in 0..nof_leaves { // check leaves assert_eq!( tree_full.get(i).unwrap(), tree_full.get_subtree_root(depth, i).unwrap() ); // check root assert_eq!(tree_full.root(), tree_full.get_subtree_root(0, i).unwrap()); } // check intermediate nodes for n in (1..=depth).rev() { for i in (0..(1 << n)).step_by(2) { let idx_l = i * (1 << (depth - n)); let idx_r = (i + 1) * (1 << (depth - n)); let idx_sr = idx_l; let prev_l = tree_full.get_subtree_root(n, idx_l).unwrap(); let prev_r = tree_full.get_subtree_root(n, idx_r).unwrap(); let subroot = tree_full.get_subtree_root(n - 1, idx_sr).unwrap(); // check intermediate nodes assert_eq!(Keccak256::hash(&[prev_l, prev_r]), subroot); } } let mut tree_opt = default_full_merkle_tree(depth); let _ = tree_opt.set_range(0, leaves.iter().cloned()); for i in 0..nof_leaves { // check leaves assert_eq!( tree_opt.get(i).unwrap(), tree_opt.get_subtree_root(depth, i).unwrap() ); // check root assert_eq!(tree_opt.root(), tree_opt.get_subtree_root(0, i).unwrap()); } // check intermediate nodes for n in (1..=depth).rev() { for i in (0..(1 << n)).step_by(2) { let idx_l = i * (1 << (depth - n)); let idx_r = (i + 1) * (1 << (depth - n)); let idx_sr = idx_l; let prev_l = tree_opt.get_subtree_root(n, idx_l).unwrap(); let prev_r = tree_opt.get_subtree_root(n, idx_r).unwrap(); let subroot = tree_opt.get_subtree_root(n - 1, idx_sr).unwrap(); // check intermediate nodes assert_eq!(Keccak256::hash(&[prev_l, prev_r]), subroot); } } } #[test] fn test_proof() { let nof_leaves = 4; let leaves: Vec = (0..nof_leaves as u32).map(TestFr::from).collect(); // We thest the FullMerkleTree implementation let mut tree = default_full_merkle_tree(DEFAULT_DEPTH); for i in 0..nof_leaves { // We set the leaves tree.set(i, leaves[i]).unwrap(); // We compute a merkle proof let proof = tree.proof(i).expect("index should be set"); // We verify if the merkle proof corresponds to the right leaf index assert_eq!(proof.leaf_index(), i); // We verify the proof assert!(tree.verify(&leaves[i], &proof).unwrap()); // We ensure that the Merkle proof and the leaf generate the same root as the tree assert_eq!(proof.compute_root_from(&leaves[i]), tree.root()); // We check that the proof is not valid for another leaf assert!(!tree.verify(&leaves[(i + 1) % nof_leaves], &proof).unwrap()); } // We test the OptimalMerkleTree implementation let mut tree = default_optimal_merkle_tree(DEFAULT_DEPTH); for i in 0..nof_leaves { // We set the leaves tree.set(i, leaves[i]).unwrap(); // We compute a merkle proof let proof = tree.proof(i).expect("index should be set"); // We verify if the merkle proof corresponds to the right leaf index assert_eq!(proof.leaf_index(), i); // We verify the proof assert!(tree.verify(&leaves[i], &proof).unwrap()); // We ensure that the Merkle proof and the leaf generate the same root as the tree assert_eq!(proof.compute_root_from(&leaves[i]), tree.root()); // We check that the proof is not valid for another leaf assert!(!tree.verify(&leaves[(i + 1) % nof_leaves], &proof).unwrap()); } } #[test] fn test_override_range() { let nof_leaves = 4; let leaves: Vec = (0..nof_leaves as u32).map(TestFr::from).collect(); let mut tree = default_optimal_merkle_tree(DEFAULT_DEPTH); // We set the leaves tree.set_range(0, leaves.iter().cloned()).unwrap(); let new_leaves = [ hex!("0000000000000000000000000000000000000000000000000000000000000005"), hex!("0000000000000000000000000000000000000000000000000000000000000006"), ] .map(TestFr); let to_delete_indices: [usize; 2] = [0, 1]; // We override the leaves tree.override_range( 0, // start from the end of the initial leaves new_leaves.iter().cloned(), to_delete_indices.iter().cloned(), ) .unwrap(); // ensure that the leaves are set correctly for (i, &new_leaf) in new_leaves.iter().enumerate() { assert_eq!(tree.get_leaf(i), new_leaf); } } }