#ifndef ZFP_ARRAY2_HPP #define ZFP_ARRAY2_HPP #include #include #include #include "zfp/array.hpp" #include "zfp/index.hpp" #include "zfp/codec/zfpcodec.hpp" #include "zfp/internal/array/cache2.hpp" #include "zfp/internal/array/handle2.hpp" #include "zfp/internal/array/iterator2.hpp" #include "zfp/internal/array/pointer2.hpp" #include "zfp/internal/array/reference2.hpp" #include "zfp/internal/array/store2.hpp" #include "zfp/internal/array/view2.hpp" namespace zfp { // compressed 2D array of scalars template < typename Scalar, class Codec = zfp::codec::zfp2, class Index = zfp::index::implicit > class array2 : public array { public: // types utilized by nested classes typedef array2 container_type; typedef Scalar value_type; typedef Codec codec_type; typedef Index index_type; typedef zfp::internal::BlockStore2 store_type; typedef zfp::internal::BlockCache2 cache_type; typedef typename Codec::header header; // accessor classes typedef zfp::internal::dim2::const_reference const_reference; typedef zfp::internal::dim2::const_pointer const_pointer; typedef zfp::internal::dim2::const_iterator const_iterator; typedef zfp::internal::dim2::const_view const_view; typedef zfp::internal::dim2::private_const_view private_const_view; typedef zfp::internal::dim2::reference reference; typedef zfp::internal::dim2::pointer pointer; typedef zfp::internal::dim2::iterator iterator; typedef zfp::internal::dim2::view view; typedef zfp::internal::dim2::flat_view flat_view; typedef zfp::internal::dim2::nested_view1 nested_view1; typedef zfp::internal::dim2::nested_view2 nested_view2; typedef zfp::internal::dim2::nested_view2 nested_view; typedef zfp::internal::dim2::private_view private_view; // default constructor array2() : array(2, Codec::type), cache(store) {} // constructor of nx * ny array using rate bits per value, at least // cache_size bytes of cache, and optionally initialized from flat array p array2(size_t nx, size_t ny, double rate, const value_type* p = 0, size_t cache_size = 0) : array(2, Codec::type), store(nx, ny, zfp_config_rate(rate, true)), cache(store, cache_size) { this->nx = nx; this->ny = ny; if (p) set(p); } // constructor, from previously-serialized compressed array array2(const zfp::array::header& header, const void* buffer = 0, size_t buffer_size_bytes = 0) : array(2, Codec::type, header), store(header.size_x(), header.size_y(), zfp_config_rate(header.rate(), true)), cache(store) { if (buffer) { if (buffer_size_bytes && buffer_size_bytes < store.compressed_size()) throw zfp::exception("buffer size is smaller than required"); std::memcpy(store.compressed_data(), buffer, store.compressed_size()); } } // copy constructor--performs a deep copy array2(const array2& a) : array(), cache(store) { deep_copy(a); } // construction from view--perform deep copy of (sub)array template array2(const View& v) : array(2, Codec::type), store(v.size_x(), v.size_y(), zfp_config_rate(v.rate(), true)), cache(store) { this->nx = v.size_x(); this->ny = v.size_y(); // initialize array in its preferred order for (iterator it = begin(); it != end(); ++it) *it = v(it.i(), it.j()); } // virtual destructor virtual ~array2() {} // assignment operator--performs a deep copy array2& operator=(const array2& a) { if (this != &a) deep_copy(a); return *this; } // total number of elements in array size_t size() const { return nx * ny; } // array dimensions size_t size_x() const { return nx; } size_t size_y() const { return ny; } // resize the array (all previously stored data will be lost) void resize(size_t nx, size_t ny, bool clear = true) { cache.clear(); this->nx = nx; this->ny = ny; store.resize(nx, ny, clear); } // rate in bits per value double rate() const { return store.rate(); } // set rate in bits per value double set_rate(double rate) { cache.clear(); return store.set_rate(rate, true); } // byte size of array data structure components indicated by mask size_t size_bytes(uint mask = ZFP_DATA_ALL) const { size_t size = 0; size += store.size_bytes(mask); size += cache.size_bytes(mask); if (mask & ZFP_DATA_META) size += sizeof(*this); return size; } // number of bytes of compressed data size_t compressed_size() const { return store.compressed_size(); } // pointer to compressed data for read or write access void* compressed_data() const { cache.flush(); return store.compressed_data(); } // cache size in number of bytes size_t cache_size() const { return cache.size(); } // set minimum cache size in bytes (array dimensions must be known) void set_cache_size(size_t bytes) { cache.flush(); cache.resize(bytes); } // empty cache without compressing modified cached blocks void clear_cache() const { cache.clear(); } // flush cache by compressing all modified cached blocks void flush_cache() const { cache.flush(); } // decompress array and store at p void get(value_type* p) const { const size_t bx = store.block_size_x(); const size_t by = store.block_size_y(); const ptrdiff_t sx = 1; const ptrdiff_t sy = static_cast(nx); size_t block_index = 0; for (size_t j = 0; j < by; j++, p += 4 * sx * ptrdiff_t(nx - bx)) for (size_t i = 0; i < bx; i++, p += 4) cache.get_block(block_index++, p, sx, sy); } // initialize array by copying and compressing data stored at p void set(const value_type* p) { const size_t bx = store.block_size_x(); const size_t by = store.block_size_y(); size_t block_index = 0; if (p) { // compress data stored at p const ptrdiff_t sx = 1; const ptrdiff_t sy = static_cast(nx); for (size_t j = 0; j < by; j++, p += 4 * sx * ptrdiff_t(nx - bx)) for (size_t i = 0; i < bx; i++, p += 4) cache.put_block(block_index++, p, sx, sy); } else { // zero-initialize array const value_type block[4 * 4] = {}; while (block_index < bx * by) cache.put_block(block_index++, block, 1, 4); } } // (i, j) accessors const_reference operator()(size_t i, size_t j) const { return const_reference(const_cast(this), i, j); } reference operator()(size_t i, size_t j) { return reference(this, i, j); } // flat index accessors const_reference operator[](size_t index) const { size_t i, j; ij(i, j, index); return const_reference(const_cast(this), i, j); } reference operator[](size_t index) { size_t i, j; ij(i, j, index); return reference(this, i, j); } // random access iterators const_iterator cbegin() const { return const_iterator(this, 0, 0); } const_iterator cend() const { return const_iterator(this, 0, ny); } const_iterator begin() const { return cbegin(); } const_iterator end() const { return cend(); } iterator begin() { return iterator(this, 0, 0); } iterator end() { return iterator(this, 0, ny); } protected: friend class zfp::internal::dim2::const_handle; friend class zfp::internal::dim2::const_reference; friend class zfp::internal::dim2::const_pointer; friend class zfp::internal::dim2::const_iterator; friend class zfp::internal::dim2::const_view; friend class zfp::internal::dim2::private_const_view; friend class zfp::internal::dim2::reference; friend class zfp::internal::dim2::pointer; friend class zfp::internal::dim2::iterator; friend class zfp::internal::dim2::view; friend class zfp::internal::dim2::flat_view; friend class zfp::internal::dim2::nested_view1; friend class zfp::internal::dim2::nested_view2; friend class zfp::internal::dim2::private_view; // perform a deep copy void deep_copy(const array2& a) { // copy base class members array::deep_copy(a); // copy persistent storage store.deep_copy(a.store); // copy cached data cache.deep_copy(a.cache); } // global index bounds size_t min_x() const { return 0; } size_t max_x() const { return nx; } size_t min_y() const { return 0; } size_t max_y() const { return ny; } // inspector value_type get(size_t i, size_t j) const { return cache.get(i, j); } // mutators (called from proxy reference) void set(size_t i, size_t j, value_type val) { cache.set(i, j, val); } void add(size_t i, size_t j, value_type val) { cache.ref(i, j) += val; } void sub(size_t i, size_t j, value_type val) { cache.ref(i, j) -= val; } void mul(size_t i, size_t j, value_type val) { cache.ref(i, j) *= val; } void div(size_t i, size_t j, value_type val) { cache.ref(i, j) /= val; } // convert flat index to (i, j) void ij(size_t& i, size_t& j, size_t index) const { i = index % nx; index /= nx; j = index; } store_type store; // persistent storage of compressed blocks cache_type cache; // cache of decompressed blocks }; typedef array2 array2f; typedef array2 array2d; } #endif