-{H|zh-tw:萬有引力;zh-cn:万有引力;}- -{H|zh-tw:牽引力;zh-cn:牵引力}- -{H|zh-tw:吸引力;zh-cn:吸引力}- -{H|zh-tw:積分形式;zh-cn:积分形式}- -{H|zh-hant:反重力;zh-hans:反重力;}- -{H|zh-tw:微分形式;zh-cn:微分形式}- -{H|zh-tw:重力加速度;zh-cn:重力加速度}- -{H|zh-tw:方程組;zh-cn:方程组}- -{H|zh-tw:質量;zh-cn:质量}- -{H|zh-tw:干涉;zh-cn:干涉}- -{H|zh-hans:函数; zh-hant:函數;}- -{H|zh-hans:常数; zh-hant:常數;}- -{H|zh-tw:電位移;zh-cn:电位移}- -{H|zh-cn:电动机;zh-hant:電動機;zh-tw:馬達;zh-hk:摩打;}- -{H|zh-tw:斯特凡尼;zh-cn:斯特凡尼}- -{H|zh-tw:斯特凡妮;zh-cn:斯特凡妮}- -{H|zh-cn:构造原理; zh-tw:遞建原理; zh-hk:構築原理;}- -{H|zh-cn:俄歇; zh-tw:奧杰;}- -{H|zh-tw:亞佛加厥常數;zh-cn:阿伏伽德罗常量;zh-hk:阿佛加德羅常數;}- -{H|zh-cn:玻尔磁子; zh-tw:波耳磁元;}- -{H|zh-cn:玻恩-奥本海默近似; zh-tw:波恩-歐本海默近似法;}- -{H|大霹靂=>zh-cn:大爆炸;大霹靂=>zh-tw:大霹靂;大霹靂=>zh-hk:大爆炸;大霹靂=>zh-sg:大爆炸;大霹靂=>zh-mo:大爆炸;}- -{H|zh-tw:大爆炸; zh-cn:大爆炸; zh-hk:大爆炸; zh-sg:大爆炸;}- -{H|zh-tw:必歐-沙伐定律;zh-cn:毕奥-萨伐尔定律}- -{H|zh-cn:玻尔兹曼常数; zh-tw:波茲曼常數;}- -{H|zh-cn:左矢; zh-tw:包量;}- -{H|zh-cn:布拉开线系; zh-tw:布拉克系;}- -{H|zh-cn:布兰斯-迪克; zh-tw:布蘭斯-狄克;}- -{H|zh-cn:布赖特-维格纳; zh-tw:布萊特-維格納;}- -{H|zh-cn:布儒斯特角; zh-tw:布魯斯特角;}- -{H|zh-tw:連心力;zh-cn:有心力}- -{H|zh-cn:链式反应; zh-tw:連鎖反應;}- -{H|连锁反应=>zh-cn:链式反应; 连锁反应=>zh-sg:链式反应; 连锁反应=>zh-my:链式反应;}- -{H|鏈式反應=>zh-tw:連鎖反應; 鏈式反應=>zh-hk:連鎖反應; 鏈式反應=>zh-mo:連鎖反應;}- -{H|zh-tw:電荷質量比;zh-cn:荷质比}- -{H|zh-tw:魅夸克;zh-cn:粲夸克}- -{H|zh-tw:魅數;zh-cn:粲数}- -{H|zh-tw:手徵;zh-cn:手征}- -{H|zh-tw:古典;zh-cn:经典;zh-hk:經典}- -{H|zh-tw:複製;zh-cn:克隆}- -{H|zh-tw:冷融合;zh-cn:冷聚变;zh-hk:冷聚變}- -{H|zh-cn:坍缩; zh-tw:塌縮;}- -{H|zh-cn:复合粒子; zh-tw:複合粒子;}- -{H|zh-cn:凝聚态; zh-tw:凝聚體;}- -{H|zh-tw:局限融合;zh-cn:约束聚变;zh-hk:約束聚變}- -{H|zh-tw:萬有引力常數;zh-cn:万有引力常数}- -{H|zh-tw:建設性干涉;zh-cn:相长干涉}- -{H|zh-tw:反變;zh-cn:反变}- -{H|座標=>zh-cn:坐标; 座標=>zh-sg:坐标; 座標=>zh-my:坐标;}- -{H|zh-tw:協變;zh-cn:协变}- -{H|zh-tw:準則;zh-cn:判据}- -{H|zh-tw:準則;zh-cn:判据}- -{H|zh-tw:迴旋加速器;zh-cn:回旋加速器}- -{H|zh-tw:去相干;zh-cn:退相干}- -{H|zh-tw:破壞性干涉;zh-cn:相消干涉}- -{H|电介质=>zh-tw:介電質}- -{H|电介体=>zh-tw:介電質}- -{H|介电体=>zh-tw:介電質}- -{H|zh-tw:介電強度;zh-cn:电介质强度}- -{H|zh-tw:繞射;zh-cn:衍射}- -{H|zh-tw:因次;zh-cn:量纲}- -{H|zh-tw:二極體;zh-cn:二极管}- -{H|zh-tw:耗能力;zh-cn:耗散力}- -{H|zh-tw:拖曳;zh-cn:拖拽}- -{H|zh-tw:扭矩轉換器;zh-cn:液力变矩器}- -{H|zh-tw:扭矩轉換器;zh-cn:扭力变矩器}- -{H|zh-tw:杜隆-泊替定律;zh-cn:杜隆-珀蒂定律}- -{H|zh-tw:回音;zh-cn:回声}- -{H|zh-tw:回音;zh-cn:回声}- -{H|zh-tw:電雙級;zh-cn:电偶极子}- -{H|zh-tw:電洞;zh-cn:空穴}- -{H|zh-tw:電位;zh-cn:电势;zh-hk:電勢}- -{H|zh-tw:電弱交互作用; zh-hk:電弱相互作用;zh-cn:弱电相互作用}- -{H|zh-tw:能階;zh-cn:能级}- -{H|zh-tw:纏結;zh-cn:纠缠}- -{H|zh-tw:方程式;zh-cn:方程}- -{H|zh-tw:等位線;zh-cn:等势线}- -{H|zh-tw:動區;zh-cn:能层;zh-sg:能层}- -{H|zh-cn:能层; zh-tw:動圈;}- -{H|zh-cn:隐失波; zh-tw:漸逝波;}- -{H|zh-tw:費米階;zh-cn:费密能级}- -{H|zh-tw:碎形;zh-cn:分形}- -{H|zh-tw:菲涅耳繞射;zh-cn:菲涅耳衍射}- -{H|zh-tw:夫朗和斐繞射;zh-cn:夫琅禾费衍射}- -{H|zh-tw:融合反應;zh-cn:聚变反应;zh-hk:聚變反應}- -{H|zh-tw:蓋格計數器;zh-cn:盖革计数器;}- -{H|zh-tw:大一統理論;zh-cn:大统一理论}- -{H|zh-tw:重力波;zh-cn:引力波;}- -{H|zh-tw:氦融合;zh-cn:氦聚变;zh-hk:氦聚變}- -{H|zh-tw:全像;zh-cn:全息}- -{H|zh-tw:氫融合;zh-cn:氢聚变;zh-hk:氫聚變}- -{H|zh-tw:惠金斯原理;zh-cn:惠更斯原理;zh-hk:惠更斯原理}- -{H|zh-tw:資訊;zh-cn:信息}- -{H|zh-tw:交互作用;zh-cn:相互作用;zh-hk:相互作用}- -{H|zh-tw:游離輻射;zh-cn:电离辐射;zh-hk:電離輻射}- -{H|zh-tw:同量素;zh-cn:同量异位素}- -{H|zh-tw:同中素;zh-cn:同中子异荷素}- -{H|zh-cn:右矢; zh-tw:括量;}- -{H|zh-tw:雷射; zh-cn:激光; zh-hk:激光; zh-sg:镭射;}- -{H|zh-tw:萬有引力定律; zh-cn:万有引力定律;}- -{H|zh-tw:勒壤得轉換;zh-cn:勒让德变换}- -{H|zh-tw:劉維定理;zh-cn:刘维尔定理}- -{H|zh-tw:洛以得鏡;zh-cn:洛埃境}- -{H|zh-tw:巨觀量;zh-cn:宏观量}- -{H|磁悬浮=>zh-hk:磁浮;磁悬浮=>zh-mo:磁浮;磁悬浮=>zh-tw:磁浮;磁悬浮=>zh-my:磁浮;磁悬浮=>zh-sg:磁浮;}- -{H|磁懸浮=>zh-hk:磁浮;磁懸浮=>zh-mo:磁浮;磁懸浮=>zh-tw:磁浮;磁懸浮=>zh-my:磁浮;磁懸浮=>zh-sg:磁浮;}- -{H|zh-tw:磁域;zh-cn:磁畴}- -{H|zh-tw:邁射;zh-cn:激微波}- -{H|zh-tw:平均自由徑;zh-cn:平均自由程}- -{H|zh-cn:摩尔;zh-tw:莫耳;zh-hk:摩爾;}- -{H|zh-cn:μ子;zh-tw:緲子;}- -{H|zh-tw:緲微中子;zh-cn:μ中微子;zh-hk:緲中微子;}- -{H|zh-tw:凈力;zh-tw:淨力;zh-cn:合力}- -{H|zh-tw:凈外力;zh-tw:淨外力;zh-cn:合外力}- -{H|zh-cn:核裂变;zh-tw:核分裂;}- -{H|zh-cn:核聚变;zh-hk:核聚變;zh-tw:核融合;}- -{H|zh-cn:核嬗变;zh-hk:核嬗變;zh-tw:核轉換}- -{H|zh-cn:核素;zh-tw:核種}- -{H|zh-tw:微中子;zh-cn:中微子}- -{H|zh-tw:雜訊;zh-cn:噪声}- -{H|zh-cn:变速圆周运动; zh-tw:變速率圓周運動;}- -{H|變速圓周運動=>zh-tw:變速率圓周運動;}- -{H|变速率圆周运动=>zh-cn:变速圆周运动;}- -{H|zh-cn:做变速圆周运动; zh-tw:作變速率圓周運動;}- -{H|作變速圓周運動=>zh-cn:做变速圆周运动;}- -{H|zh-tw:悖論;zh-cn:佯谬}- -{H|zh-cn:周期; zh-tw:週期;}- -{H|zh-tw:微擾;zh-cn:摄动}- -{H|zh-tw:電漿體; zh-cn:等离子体; zh-hk:等離子體;}- -{H|zh-tw:電漿; zh-cn:等离子体; zh-hk:等離子體;}- -{H|等离子区=>zh-tw:電漿;}- -{H|zh-tw:電漿態;zh-cn:等离子态;zh-hk:等離子態}- -{H|zh-tw:正子電子偶;zh-cn:电子偶素}- -{H|zh-cn:势能;zh-hk:位能;zh-tw:位能;zh-hant:勢能;}- -{H|压强=>zh-tw:壓力; 壓力=>zh-tw:壓力;}- -{H|zh-tw:機率;zh-cn:概率}- -{H|几率=>zh-cn:几率;几率=>zh-tw:機率;几率=>zh-hk:機率;几率=>zh-sg:几率;几率=>zh-mo:機率;}- -{H|zh-tw:原時;zh-cn:固有时}- -{H|zh-cn:夸克-胶子等离子体; zh-hk:夸克-膠子等離子體; zh-tw:夸克-膠子漿;}- -{H|zh-tw:量子位元;zh-cn:量子比特}- -{H|zh-tw:純量勢;zh-cn:标势}- -{H|zh-cn:奇点; zh-tw:奇異點;}- -{H|奇异点=>zh-cn:奇点; 奇异点=>zh-sg:奇点; 奇异点=>zh-my:奇点;}- -{H|奇異点=>zh-cn:奇点; 奇異点=>zh-sg:奇点; 奇異点=>zh-my:奇点;}- -{H|奇點=>zh-tw:奇異點; 奇點=>zh-hk:奇異點; 奇點=>zh-mo:奇異點;}- -{H|zh-tw:切應力;zh-cn:剪应力}- -{H|zh-cn:固体物理学;zh-hk:固態物理學;zh-tw:固態物理學}- -{H|zh-tw:靜不定;zh-cn:超静定}- -{H|zh-tw:史頓一加立克實驗;zh-cn:斯特恩一革拉赫实验}- -{H|zh-cn:升华; zh-hk:昇華; zh-tw:昇華}- -{H|zh-cn:亚原子; zh-hk:亞原子; zh-tw:次原子}- -{H|zh-tw:迅子;zh-cn:快子}- -{H|zh-tw:濤微中子;zh-hk:陶中微子;zh-cn:τ中微子}- -{H|zh-tw:陶子;zh-hk:陶子;zh-cn:τ子}- -{H|zh-tw:特斯拉;zh-cn:特斯拉;zh-hk:忒斯拉}- -{H|zh-tw:熱影像;zh-cn:热成像;}- -{H|zh-tw:托克馬克;zh-cn:托卡马克;}- -{H|zh-cn:隧穿; zh-tw:穿隧;}- -{H|zh-tw:亂流;zh-cn:湍流}- -{H|zh-cn:超声波; zh-hk:超聲波; zh-tw:超音波;}- -{H|zh-cn:欠阻尼; zh-tw:次阻尼;}- -{H|zh-cn:匀速运动; zh-tw:等速運動;}- -{H|勻速運動=>zh-tw:等速運動;}- -{H|等速运动=>zh-cn:匀速运动;}- -{H|zh-cn:做匀速运动; zh-tw:作等速運動;}- -{H|作等速率運動=>zh-cn:做匀速运动;}- -{H|zh-cn:匀速圆周运动; zh-tw:等速率圓周運動;}- -{H|勻速圓周運動=>zh-tw:等速率圓周運動;}- -{H|等速率圆周运动=>zh-cn:匀速圆周运动;}- -{H|等速圓周運動=>zh-cn:匀速圆周运动; 等速圓周運動=>zh-tw:等速率圓周運動;}- -{H|等速圆周运动=>zh-cn:匀速圆周运动; 等速圓周運動=>zh-tw:等速率圓周運動;}- -{H|zh-cn:做匀速圆周运动; zh-tw:作等速率圓周運動;}- -{H|作等速圓周運動=>zh-cn:做匀速圆周运动;}- -{H|勻速直線運動=>zh-tw:等速直線運動;}- -{H|等速直线运动=>zh-cn:匀速直线运动;}- -{H|zh-cn:做匀速直线运动; zh-tw:作等速直線運動;}- -{H|作等速率直線運動=>zh-cn:做匀速直线运动;}- -{H|zh-tw:唯一定理;zh-cn:唯一性定理;}- -{H|zh-tw:么正;zh-cn:幺正}- -{H|zh-tw:萬向接頭;zh-cn:万向接头}- -{H|zh-hans:范德华方程;zh-hk:范德華方程式;zh-tw:凡得瓦方程式;}- -{H|zh-tw:向量勢;zh-cn:矢势}- -{H|zh-tw:波向量;zh-cn:波矢}- -{H|zh-cn:做功;zh-tw:作功}- -{H|zh-cn:做正功;zh-tw:作正功}- -{H|zh-cn:做负功;zh-tw:作負功}- -{H|zh-cn:做的功;zh-tw:作的功}- -{H|zh-cn:做了功;zh-tw:作了功}- -{H|zh-tw:亞佛加厥;zh-cn:阿伏伽德罗;zh-hk:阿佛加德羅}- -{H|zh-tw:貝克勒;zh-hk:貝克勒爾;zh-cn:贝克勒尔}- -{H|zh-tw:比得諾茲;zh-cn:贝德诺尔茨}- -{H|zh-tw:白努利;zh-cn:伯努利}- -{H|zh-tw:必歐;zh-cn:毕奥}- -{H|zh-tw:波耳;zh-cn:玻尔;zh-hk:玻爾}- -{H|zh-tw:波茲曼;zh-cn:玻尔兹曼}- -{H|zh-cn:波义耳; zh-tw:波以耳;}- -{H|zh-tw:布拉菲;zh-cn:布拉维}- -{H|zh-tw:布里元;zh-cn:布里渊}- -{H|zh-tw:查兌克;zh-cn:查德威克;zh-hans:查德威克;zh-hk:查德威克}- -{H|zh-tw:契忍可夫;zh-hk:切倫科夫;zh-cn:切连科夫}- -{H|zh-cn:居里;zh-hk:居禮;zh-tw:居禮;}- -{H|zh-tw:德威特;zh-cn:德维特}- -{H|zh-tw:都卜勒;zh-cn:多普勒}- -{H|zh-tw:德汝德;zh-cn:德鲁德}- -{H|zh-cn:欧内斯特; zh-tw:歐尼斯特; zh-hk:歐內斯特;}- -{H|zh-tw:法布立; zh-cn:法布里}- -{H|zh-tw:佛雷洛夫; zh-cn:弗廖罗夫}- -{H|zh-tw:傅立葉; zh-cn:傅里叶}- -{H|zh-tw:法蘭克;zh-cn:弗兰克}- -{H|zh-tw:傅里德曼;zh-cn:弗里德曼}- -{H|zh-tw:給呂薩克;zh-cn:盖-吕萨克}- -{H|zh-tw:革拉赫;zh-cn:格拉赫}- -{H|zh-tw:黑維塞;zh-cn:亥维赛}- -{H|zh-tw:虎克;zh-cn:胡克}- -{H|zh-tw:哈伯;zh-cn:哈勃;zh-hk:哈勃}- -{H|zh-tw:易辛;zh-cn:伊辛}- -{H|zh-tw:克耳文;zh-cn:开尔文;zh-hk:開爾文}- -{H|zh-tw:克卜勒;zh-cn:开普勒;zh-hk:開普勒}- -{H|zh-tw:克希荷夫;zh-cn:基尔霍夫;zh-hk:基爾霍夫}- -{H|zh-tw:朗繆耳;zh-cn:朗缪尔}- -{H|zh-tw:冷次;zh-cn:楞次;zh-hk:楞次}- -{H|zh-tw:黎納;zh-cn:李纳}- -{H|zh-tw:勞侖茲;zh-cn:洛伦兹}- -{H|羅倫徹=>zh-cn:洛伦兹; 羅倫徹=>zh-sg:洛伦兹;}- -{H|zh-tw:勞侖次;zh-cn:洛伦茨}- -{H|zh-cn:玛丽·居里;zh-hk:瑪莉·居禮;zh-tw:瑪麗·居禮;}- -{H|zh-cn:玛丽亚·居里;zh-hk:瑪莉亞·居禮;zh-tw:瑪麗亞·居禮;}- -{H|zh-tw:馬克士威;zh-cn:麦克斯韦;zh-hk:麥克斯韋}- -{H|zh-tw:邁克生;zh-cn:迈克耳孙}- -{H|zh-tw:閔考斯基;zh-cn:闵可夫斯基}- -{H|莫立=>zh-cn:莫雷}- -{H|摩里=>zh-cn:莫雷}- -{H|zh-tw:莫斯利;zh-cn:莫塞莱}- -{H|zh-tw:梅斯堡;zh-cn:穆斯堡尔}- -{H|zh-tw:歐本海默;zh-cn:奥本海默}- -{H|zh-tw:包立;zh-cn:泡利}- -{H|zh-tw:潘洛斯;zh-cn:彭罗斯}- -{H|zh-tw:培若;zh-cn:珀罗}- -{H|zh-cn:皮埃尔·居里; zh-tw:皮耶·居禮;}- -{H|皮埃爾·居里=>zh-tw:皮耶·居禮; 皮埃爾·居里=>zh-hk:皮耶·居禮; 皮埃爾·居里=>zh-mo:皮耶·居禮;}- -{H|皮埃爾·居禮=>zh-tw:皮耶·居禮; 皮埃爾·居禮=>zh-hk:皮耶·居禮; 皮埃爾·居禮=>zh-mo:皮耶·居禮;}- -{H|zh-tw:帕松;zh-cn:泊松}- -{H|zh-tw:坡印廷;zh-cn:坡印亭}- -{H|zh-tw:瑞立;zh-cn:瑞利}- -{H|zh-tw:萊斯納;zh-cn:雷斯勒}- -{H|zh-tw:拉塞福;zh-cn:卢瑟福;zh-hk:盧瑟福}- -{H|zh-tw:芮得柏;zh-cn:里德伯}- -{H|zh-tw:沙卡洛夫;zh-cn:萨哈罗夫;zh-hk:沙哈諾夫}- -{H|zh-tw:沙伐;zh-cn:萨伐尔;}- -{H|zh-tw:薛丁格;zh-cn:薛定谔;zh-hk:薛定諤}- -{H|zh-tw:司乃耳;zh-cn:斯涅尔;zh-hk:斯涅耳}- -{H|zh-cn:斯坦福; zh-sg:斯坦福; zh-tw:史丹佛; zh-hk:史丹福}- -{H|zh-tw:史塔克;zh-cn:斯塔克}- -{H|zh-tw:斯特凡;zh-cn:斯特藩}- -{H|zh-tw:斯特恩;zh-cn:施特恩}- -{H|zh-cn:萨斯坎德; zh-hk:蘇士侃;zh-tw:色斯金}- -{H|zh-tw:湯姆森;zh-cn:汤姆孙;zh-hk:湯姆生}- -{H|zh-tw:凡得瓦;zh-cn:范德瓦耳斯;zh-hk:范德華}- -{H|zh-tw:馮·諾伊曼;zh-cn:冯·诺伊曼;zh-hk:馮·紐曼}- -{H|zh-tw:沃克;zh-cn:沃尔克}- -{H|zh-tw:維因;zh-cn:维恩}- -{H|zh-tw:威爾森;zh-cn:威耳孙}- -{H|zh-tw:維騰;zh-cn:威滕}- -{H|阿伐=>zh-cn:阿尔法; 阿伐=>zh-sg:阿尔法; 阿伐=>zh-hk:阿爾法; 阿伐=>zh-mo:阿爾法;}- -{H|zh-cn:贝塔;zh-hk:貝塔;zh-tw:貝他;}- -{H|zh-cn:伽马; zh-tw:伽瑪;zh-tw:伽瑪;}- -{H|zh-cn:阿尔伯特·爱因斯坦; zh-tw:阿爾伯特·爱因斯坦; zh-hk:亞厘畢·爱因斯坦;}- {{NoteTA |G1=物理學 |=zh-cn:阿尔伯特·爱因斯坦; zh-tw:阿爾伯特·爱因斯坦; zh-hk:亞厘畢·爱因斯坦; }} {{参见简介}} {{Good article}} {{量子力学}} [[File:Solvay conference 1927.jpg|thumb|250px|1927年第五次[[索尔维会议]],此次會議主題為「[[電子]]和[[光子]]」,世界上最主要的物理學家聚集在一起討論新近表述的量子理論]] '''量子力学'''(英語:Quantum mechanics)是[[物理學]]的分支學科。它主要描写[[微观]]的事物,与[[相对论]]一起被认为是[[现代物理学]]的两大基本支柱,许多物理学理论和科学,如[[原子物理学]]、[[固体物理学]]、[[原子核物理学|核物理学]]和[[粒子物理學|粒子物理学]]以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的[[古典物理學|經典理論]]並沒有辦法解釋微观系统,於是經由[[物理學家]]的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除了透过[[广义相对论]]描写的[[万有引力|引力]]外,迄今所有[[基本相互作用]]均可以在量子力学的框架内描述([[量子场论]])。 量子理论的重要应用包括[[宇宙學]]、[[量子化学]]、[[量子光学]]、[[量子计算]]、[[超导磁体]]、[[发光二极管]]、[[激光器]]、[[晶体管]]和[[半导体]]如[[微处理器]]等。 [[愛因斯坦]]可能是在科學文獻中最先給出術語「量子力學」的物理學者。{{rp|86}}{{efn|1922年,[[阿尔伯特·爱因斯坦]]评价当时对于[[超导]]的理论解释:“目前我们对于复合系统的量子力学的深远意义仍一无所知。在这些模糊的概念的基础上,我们距离构造出(能描述超导现象的)理论的目标仍很遥远。{{rp|86}}}} == 关键现象、歷史背景 == === 黑体辐射 === [[File:RWP-comparison.svg|thumb|right|200px|[[普朗克定律]](绿)、[[維恩定律]](蓝)和[[瑞利-金斯定律]](红)在频域下的比较,可见维恩定律在高频区域和普朗克定律相符,瑞利-金斯定律在低频区域和普朗克定律相符。]] {{Main|黑体辐射}} 理想[[黑體 (物理學)|黑体]]可以吸收所有照射到它表面的[[電磁辐射]],并将这些辐射转化为[[热辐射]],其光谱特征仅与该黑体的温度有关,與黑體的材質無關。从古典物理学出发推導出的[[維恩定律]]在低頻區域與實驗數據不相符,而在高頻區域,从古典物理学的[[能量均分定理]]推導出[[瑞利-金斯定律]]又與實驗數據不相符,在辐射频率趋向无穷大时,能量也會變得無窮大,這結果被称作“[[紫外灾变]]”。然而在那時,普朗克並未注意到紫外灾变的嚴重性。 1900年12月14日,後來被定為量子力學的誕辰参见中文简体SI版《伯克利物理学教程》第四卷第24页,1.38小节{{Verify source|time=20221112}},[[马克斯·普朗克]]在[[柏林科學院]]發表報告,通過將維恩定律加以改良,又將[[波茲曼熵公式]]重新詮釋,他得出了一个与实验数据完全吻合的[[普朗克公式]]来描述黑体辐射,但是在诠释这个公式时,他将在物体裡發射與吸收輻射的原子視為微小的[[量子谐振子]],並且假设这些量子谐振子的能量不是连续的,而是离散的數值,並且單獨量子谐振子吸收和發射的辐射能是量子化的。{{cite book|author=Werner Heisenberg|title=Physics and Philosophy: The Revolution in Modern Science| url=https://archive.org/details/PhysicsPhilosophy|year=1999|publisher=Prometheus Books|isbn=978-1-57392-694-2}}{{rp|第2章}}{{cite book | last =Kragh | first =Helge | title =Quantum Generations: A History of Physics in the Twentieth Century | publisher =Princeton University Press | edition =Reprint | date =2002 | isbn =978-0691095523}}{{rp|58-66}}{{cite book|author=Abraham Pais|title=Subtle is the Lord : The Science and the Life of Albert Einstein: The Science and the Life of Albert Einstein|date=23 September 1982|publisher=Oxford University Press|isbn=978-0-19-152402-8}}{{rp|364-372}} === 光电效应 === [[File:Photoelectric effect in a solid - diagram.svg|thumb|200px|光電效應示意圖:來自左上方的光子衝擊到金屬板,將電子逐出金屬板,並且向右上方移去。]] {{Main|光电效应}} [[海因里希·赫兹]]於1887年实验发现,如果照射[[紫外光]]於金属表面,則电子會從金属表面被發射出来,他因此發現了[[光電效應]]。1905年,[[阿爾伯特·爱因斯坦]]提出了光量子的理论来解释这个现象。他認為,光束是由一群離散的光量子所組成,而不是連續性波動。這些光量子現今被稱為[[光子]],其能量E为 :E=h\nu 这裡,\nu 是[[頻率]],h 為[[普朗克常數]]。 爱因斯坦大胆地预言,假若光子的频率高于金属的极限频率,则这光子可以给予足够能量来使得金属表面的一个电子逃逸,造成光电效应。电子获得的能量中,一部分被用来将金属中的电子射出,这部分能量叫[[逸出功]],(用E_{\mbox{w}}表示),另一部分成為了逃逸电子的動能: :h\nu=E_{\mbox{w}}+\frac{1}{2}mv^2 这裡 m 是电子的质量,v 是其速度。 假若光的频率低於金屬的極限頻率,那么它无法使得电子获得足够的逸出功。这时,不论[[輻照度]]有多大,照射時間有多長,都不會發生光電效應。而当入射光的頻率高於極限頻率時,即使光不夠強,當它射到金屬表面時也會觀察到光電子發射。[[羅伯特·密立根]]後來的實驗證明這些理論與預言屬實。 爱因斯坦將普朗克的量子理论加以延伸擴展,他提出不仅仅物质与电磁辐射之间的相互作用是量子化的,而且量子化是一个基本物理特性的理论。通过这个新理论,他得以解释[[光电效应]]。{{citation |last1=Halliday|first1=David|last2=Resnick|first2=Robert|last3=Walker|first3=Jerl|title = Fundamental of Physics|publisher = John Wiley and Sons, Inc.|location = USA|edition = 7th|isbn=0-471-23231-9|year=2005}}{{rp|1060-1063}}{{rp|67-68}} === 原子结构 === {{main|原子論}} [[File:Bohr atom model.svg|thumb|right|200px|按照氫原子或類氫原子的玻爾模型,帶負價的電子被侷限於原子殼層,它們環繞著尺寸很小的帶正價原子核。電子從一個能量較高的軌道躍遷到能量較低的軌道時,會以電磁波的形式將能量差釋出。{{cite journal |author=Akhlesh Lakhtakia (Ed.) |year=1996 |title=Models and Modelers of Hydrogen |publisher=World Scientific |isbn=981-02-2302-1 |bibcode=1997AmJPh..65..933L |last2=Salpeter |first2=Edwin E. |volume=65 |pages=933 |journal=American Journal of Physics |doi=10.1119/1.18691 |issue=9 }}{{rp|49-82}}]] 20世纪初,[[卢瑟福模型]]被公认为正确的[[原子理論|原子模型]]。这个模型假设带负电荷的电子,像行星围绕太阳运转一样,围绕带正电荷的[[原子核]]运转。在这个过程中[[库仑定律|库仑力]]与[[离心力]]必须平衡。 但是这个模型有两个问题无法解决。首先,按照經典电磁学,这个模型不稳定,由於电子不断地在它的运转过程中被加速,它应该會通过發射电磁波丧失能量,这样它很快就会坠入原子核。其次,实验结果显示,原子的[[發射光譜|发射光谱]]是由一系列离散的发射线组成,比如[[氢原子]]的发射光谱是由一个[[紫外线]]系列([[來曼系]])、一个可见光系列([[巴耳麥系]])和其它的[[红外线]]系列组成;而按照經典理论原子的发射谱应该是连续的。 1913年,[[尼尔斯·玻尔]]提出了[[玻尔模型]],这个模型引入量子化的概念來解釋原子结构和光谱线。玻尔认为,电子只能在对应某些特定能量值E_n的轨道上运動。假如一个电子,从一个能量比较高的轨道(E_n),躍遷到一个能量比较低的轨道(E_m)上时,它发射的光的频率为 :\nu=\frac{E_n-E_m}{h} 反之,通过吸收同样频率的光子,电子可以从低能的轨道,躍遷到高能的轨道上。 玻尔模型可以解释[[氢原子]]的结构。改善的玻尔模型,还可以解释[[類氫原子]]的結構,即 He+, Li2+, Be3+ 等。但它还不够完善,仍然无法准确地解释其它原子的物理现象。{{rp|53-57}}{{citation | last=French|first=Anthony| title = An Introduction to Quantum Physics| date = 1978 | publisher = W. W. Norton, Inc.}}{{rp|24-29}} === 物质波 === {{main|物質波}} [[File:Doubleslitexperiment results Tanamura 1.gif|thumb|right|200px|{{link-ja|外村彰|外村彰}}(Akira Tonomura)團隊做電子雙縫實驗得到的干涉圖樣:每秒約有1000個電子抵達探測屏,電子與電子之間的距離約為150km,兩個電子同時存在於電子發射器與探測屏之間的概率微乎其微。圖中每一亮點表示一個電子抵達探測屏,{{efn|雖然每一點表示一個電子抵達探測屏,這事實並不能表現出電子的粒子性,因為探測器是由離散原子組成的,這可以詮釋為電子波與離散原子彼此之間的相互作用。{{cite journal | last =Hobson | first =Art | title =There are no particles, there are only fields | journal =American Journal of Physics | volume =81 | issue =211 | year =2013 | url =http://arxiv.org/abs/1204.4616 | doi =10.1119/1.4789885 | access-date =2014-09-25 | archive-date =2015-02-10 | archive-url =https://web.archive.org/web/20150210063318/http://arxiv.org/abs/1204.4616 | dead-url =no }}|name=ElectronDetection}}經過一段時間,電子的累積顯示出干涉圖樣。{{cite journal | last =Tonomura | first =Akira | coauthors =et al. | title =Demonstration of single‐electron buildup of an interference pattern | journal =American Journal of Physics | volume =57 | issue =2 | pages =117-120 | date =1988 | doi =10.1119/1.16104 }}]] 1924年,[[路易·德布罗意]]發表博士論文提出,粒子拥有波动性,其波长\lambda_{Broglie}与动量p成反比,以方程式表示為{{cite book | last=Davisson | first=Clinton | chapter=The Discovery of Electron Waves | title=Nobel Lectures, Physics 1922-1941 | url=http://nobelprize.org/nobel_prizes/physics/laureates/1937/davisson-lecture.html | location=Amsterdam | publisher=Elsevier Publishing Company | year=1965 | isbn= | accessdate=2007-09-17 | archive-date=2017-08-27 | archive-url=https://web.archive.org/web/20170827084747/http://nobelprize.org/nobel_prizes/physics/laureates/1937/davisson-lecture.html | dead-url=no }} :\lambda_{Broglie}=\frac{h}{p}。 這理論稱為[[德布羅意假說]],又稱為[[德布羅意假說|物質波假說]]。這意味著電子不但具有粒子性,還具有波動性。 1927年,[[克林顿·戴维森]]與[[雷斯特·革末]]做實驗將低能量電子入射於鎳晶體,然後測量對於每一個角度的散射強度。從分析實驗數據,他們發現,假設加速電勢為5.4eV,則在50°之處會出現強勁反射,符合[[威廉·布拉格]]於1913年所提出的 [[X射線]]繞射性質。這驚人的結果證實電子是一種物質波,也證實了物質波假說。這實驗就是著名的[[戴維森-革末實驗]]。{{rp|64-68}} 电子的[[双缝实验]]可以非常生动地展示出多种不同的量子力学现象。{{cite book|last = 費曼|first = 理查|last2 = 雷頓|first2 = 羅伯|last3 = 山德士|first3 = 馬修|title = 費曼物理學講義 III (1) 量子行為|publisher =天下文化書|location =台灣|date = 2006|pages = pp. 38-60|isbn = 986-417-672-2 }}如右图所示, * 打在屏幕上的电子是点状的,这个现象与一般感受到的点状的粒子相同。{{efn|name=ElectronDetection}} * 电子打在屏幕上的位置,有一定的分布概率,随时间可以看出双缝衍射所特有的条纹图像。假如一个光缝被关闭的话,所形成的图像是单缝特有的波的分布概率。 在图中的实验裡,电子源的强度非常低,所發射出的電子與電子之間的距離約為150km,任意兩個電子同時存在於電子發射器與探測屏之間的概率微乎其微。显然可以推斷,單獨电子同时通过了两條狹缝,自己與自己發生干涉,从而出現这个干涉圖樣。对于經典物理学来说,这个解释非常奇怪。从量子力学的角度来看,电子的分布概率可以用两个分別通过两條狹縫的[[量子态]]疊加在一起來解釋。这个实验非常具有信服力地展示出電子的波動性。 == 数学基础 == {{main|量子力学的数学表述}} 在二十世紀二十年代,出现了两种量子物理的理论,即[[维尔纳·海森堡]]的[[矩阵力学]]和[[埃尔温·薛定谔]]的[[波动力学]]。 海森堡主張,只有在實驗裏能夠觀察到的物理量([[可觀察量]]),才具有物理意義,才可以用理論描述其物理行為,例如,不能直接觀察到電子運動於原子裏的位置與週期。因此,他著重於研究電子躍遷時所發射光波的離散頻率和[[輻照度]],這些是可觀察量。但是,他無法實際應用這點子於[[氫原子]]問題,因為這問題太過複雜,他只能改應用這點子於比較簡單,但也比較不實際的問題。經過一番努力,他計算出[[諧振子]]問題的[[發射光譜|能譜]]與[[零點能量]],符合[[光譜學|分子光譜學]]的結果。另外,在海森堡理論中,系統的[[哈密頓量]]是位置和動量的函數,但它們不再具有古典力學中的定義,而是由二階(代表著過程的初態和終態)[[傅立葉變換|傅立葉係數]]的矩陣給出。海森堡還發現,這些矩陣互不[[對易關係|對易]]。這些論述後來發展成為矩陣力學。{{rp|161-163}} 從德布羅意論文的相對論性理論,薛定谔推導出一種波動方程式,稱為[[薛定谔方程式]];用這方程式可以計算出氫原子的譜線,得到與[[波耳模型]]完全相同的答案。波动力学的基礎方程式就是薛定谔方程式{{rp|163-164}} 薛定谔率先於1926年证明了这两种理论的等价性。稍后,{{le|卡爾·埃卡特|Carl Eckart}}和[[沃爾夫岡·包立]]也给出類似证明,{{rp|166}}[[约翰·冯·诺伊曼]]严格地证明了波动力学和矩阵力学的等价性。{{cite book | last =von Neumann | first =John | title =Mathematical Foundations of Quantum Mechanics | publisher =Princeton Univ. Press | edition =1996 | date =1932 | isbn =0-691-02893-1 }} === 基礎公設 === 整個量子力学的数学理论可以建立於五个基礎公設。這些公設不能被嚴格推導出來,而是從實驗結果仔細分析归纳总结而得到的。從這五個公設,可以推導出整個量子力學。假若量子力學的理論結果不符合實驗結果,則必須將這些基礎公設加以修改,直到沒有任何不符合之處。至今為止,量子力學已被實驗核對至極高準確度,還沒有找到任何與理論不符合的實驗結果,雖然有些理論很難直覺地用經典物理的概念來理解,例如,[[波粒二象性]]、[[量子糾纏]]等等。{{cite journal | last =Zurek | first =Wojciech | title =Quantum Darwinism, Classical Reality, and the randomness of quantum jumps | url =https://archive.org/details/sim_physics-today_2014-10_67_10/page/44 | journal =Physics Today | volume =67 | issue =10 | pages =44-45 | date =2014}}{{cite book|author=Claude Cohen-Tannoudji, Bernard Diu, Franck Laloë|title=Quantum Mechanics Volume 1|publisher=Hermann|isbn=978-2-7056-8392-4}}{{rp|211ff}}{{cite book|author=Nouredine Zettili|title=Quantum Mechanics: Concepts and Applications|accessdate=27 August 2013|date=17 February 2009|publisher=John Wiley & Sons|isbn=978-0-470-02678-6}}{{rp|165-167}} # 量子態公設:量子系统在任意时刻的状态(量子態)可以由[[希尔伯特空间]] \mathcal{H} 中的態矢量 |\psi\rangle 来設定,這態矢量完備地給出了這量子系統的所有信息。這公設意味著量子系統遵守[[态叠加原理]],假若|\psi_1\rangle|\psi_2\rangle屬於希尔伯特空间\mathcal{H},則c_1|\psi_1\rangle+c_2|\psi_2\rangle也屬於希尔伯特空间\mathcal{H} ,c_1c_2皆為常數。 #時間演化公設: 态矢量為 |\psi(t)\rangle 的量子系統,其动力学演化可以用[[薛定谔方程#含時薛定諤方程|薛定谔方程]]表示,i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle ;其中,[[哈密顿算符]] \hat{H} 对应於量子系统的总能量,\hbar是[[約化普朗克常數]]。根據薛定谔方程,假設時間從t_0流动到t,則態向量從|\psi(t_0)\rangle演化到 |\psi(t)\rangle ,這過程以方程式表示為|\psi(t)\rangle = \hat{U}(t, t_0) |\psi(t_0)\rangle ;其中,\hat{U}(t, t_0)= e^{-i\hat{H}(t-t_0) / \hbar} 是時間演化算符。 #可觀察量公設:每個[[可观察量]] A 都有其對應的[[厄米算符]] \hat{A} ,而算符\hat{A}的所有本徵矢量共同組成一個完備[[基底]]。 #塌縮公設:對於量子系統測量某個可觀察量 A ,這動作可以數學表示為將其對應的厄米算符\hat{A} 作用於量子系統的態矢量 |\psi\rangle ,測量值只能為厄米算符\hat{A} 的本徵值。在測量後,假設測量值為a_i,則量子系統的量子態立刻會塌縮為對應於本徵值a_i的本徵態 |e_i\rangle 。 #[[玻恩定則|波恩公設]]:對於這測量,獲得本徵值 a_i 的概率為量子態|\psi\rangle處於本徵態|e_i\rangle的[[概率幅]]的絕對值平方。{{efn|1=使用可觀察量 A的基底e_1,e_2,\dots,e_n\ ,量子態 |\psi\rangle可以表示為|\psi\rangle=\sum_j c_j|e_j\rangle;其中c_j是量子態|\psi\rangle處於本徵態|e_j\rangle的[[概率幅]]。根據[[波恩定則]],對於這測量,獲得本徵值 a_i 的概率為 |\langle e_i|\psi\rangle|^2=|c_i|^2。}} === 量子態與量子算符 === [[File:Stern-Gerlach experiment zh.png|thumb|250px|設定[[斯特恩-革拉赫實驗]]儀器的磁場方向為z-軸,入射的銀原子束可以被分裂成兩道銀原子束,每一道銀原子束代表一種量子態,上旋\left\vert \uparrow \right\rangle或下旋\left\vert \downarrow \right\rangle{{Citation | last1 = Sakurai | first1 = J. J. |last2 = Napolitano | first2 = Jim | title = Modern Quantum Mechanics | edition = 2nd | publisher = Addison-Wesley | year = 2010 | isbn =978-0805382914 }}{{rp|1-4}}]] {{Main|量子態|算符}} [[量子態]]指的是量子系統的狀態,[[態向量]]可以用來抽象地表現量子態。採用[[狄拉克標記]],態向量表示為[[狄拉克標記|右矢]]\left\vert \psi \right\rangle;其中,在符號內部的希臘字母\psi可以是任何符號,字母,數字,或單字。例如,沿著[[磁場]]方向測量[[電子]]的[[自旋]],得到的結果可以是上旋或是下旋,分別標記為\left\vert \uparrow \right\rangle\left\vert \downarrow \right\rangle{{citation| author=Griffiths, David J.|title=Introduction to Quantum Mechanics (2nd ed.) | publisher=Prentice Hall |year=2004 |isbn= 0-13-111892-7}}{{rp|93-96}} 對量子態做[[操作定義]],量子態可以從一系列製備程序來辨認,即這程序所製成的量子系統擁有這量子態。{{citation |last=Laloe| first=Franck|title=Do We Really Understand Quantum Mechanics| publisher=Cambridge University Press|year=2012| isbn = 978-1-107-02501-1}}{{rp|15-16}}例如,使用[[斯特恩-革拉赫實驗]]儀器,設定磁場朝著z-軸方向,如右圖所示,可以將入射的銀原子束,依照自旋的z-分量分裂成兩道,一道為上旋,量子態為\left\vert \uparrow \right\rangle,另一道為下旋,量子態為\left\vert \downarrow \right\rangle,這樣,可以製備成量子態為\left\vert \uparrow \right\rangle的銀原子束,或量子態為\left\vert \downarrow \right\rangle的銀原子束。原本銀原子束的態向量可以按照[[態疊加原理]]表示為{{rp|1-4}} :\left\vert \psi \right\rangle=\alpha\left\vert \uparrow \right\rangle+\beta\left\vert \downarrow \right\rangle; 其中,\alpha\beta是複值係數,|\alpha|^2|\beta|^2分別為入射銀原子束處於上旋、下旋的概率,|\alpha|^2+|\beta|^2=1。 在斯特恩-革拉赫實驗裏,可以透過測量而得到自旋的z-分量,這種物理量稱為[[可觀察量]],透過做實驗測量可以得到其測值。每一個可觀察量都有一個對應的[[算符|量子算符]];將算符作用於量子態,會使得量子態線性變換成另一個量子態。假若變換前的量子態與變換後的量子態,除了乘法數值以外,兩個量子態相同,則稱此量子態為此算符的[[本徵態]],稱此乘法數值為此算符的[[本徵值]]。{{rp|11-12}}可觀察量的算符也許會有很多本徵值與本徵態。根據[[統計詮釋]],每一次測量所得到的測值只能是其中的一個本徵值,而且,測得這本徵值的機會呈概率性,量子系統的量子態也會改變為對應於本徵值的本徵態。{{rp|106-109}}例如,自旋的z-分量是個[[可觀察量]]S_z,做實驗可以得到的測值為+\hbar/2-\hbar/2。對應於[[可觀察量]]S_z的量子算符\hat{S}_z有兩個本徵值分別為+\hbar/2-\hbar/2的本徵態\left\vert \uparrow \right\rangle\left\vert \downarrow \right\rangle,所以將量子算符\hat{S}_z分別作用於這兩個本徵態,會得到{{rp|11-12}} :\hat{S}_z\left\vert \uparrow \right\rangle=+\tfrac{\hbar}{2}\left\vert \uparrow \right\rangle、 :\hat{S}_z\left\vert \downarrow \right\rangle=-\tfrac{\hbar}{2}\left\vert \downarrow \right\rangle。 將量子算符\hat{S}_z作用於量子態\left\vert \psi \right\rangle=\alpha\left\vert \uparrow \right\rangle+\beta\left\vert \downarrow \right\rangle,會得到本徵值+\hbar/2-\hbar/2的概率分別為|\alpha|^2|\beta|^2。假若本徵值為+\hbar/2,則量子態\left\vert \psi \right\rangle會塌縮為量子態\left\vert \uparrow \right\rangle;假若本徵值為-\hbar/2,則量子態\left\vert \psi \right\rangle會塌縮為量子態\left\vert \downarrow \right\rangle。 ===动力学演化 === {{Main|量子色動力學|量子電動力學}} 在量子力學公設裏,第二項直接提到量子系統的動力學演化,其遵守含時薛丁格方程式,因此,量子態的演化在任意時刻可以被完全預測,具有連續性、命定性與可逆性。第四項提到,當對於量子系統作[[量子測量|測量]]時,其量子態會塌縮至幾個本徵態中的一個本徵態,具有不連續性、概率性與不可逆性。怎樣調和這兩種不同的行為,一種是關於量子態的自然演化,另一種是關於測量引發的演化,這仍舊是[[未解決的物理學問題]]。{{rp|7-11}} 量子系統的动力学演化可以用不同的绘景来表現。通过重新定义,这些不同的繪景可以互相變换,它们实际上是等價的。假若要專注分析量子態怎樣隨著時間的流易而演化,[[#時間演化算符|時間演化算符]]怎樣影響量子態,則可採用[[薛丁格繪景]]。假若要專注了解對應於可觀察量的算符怎樣隨著時間的流易而演化、時間演化算符怎樣影響這些算符,則可採用[[海森堡绘景]]。{{rp|80-89}} == 主要論題 == === 测量过程 === 量子力学与經典力学的一个主要区别,在於怎樣理論論述测量过程。在經典力学裏,一个物理系统的位置和动量,可以同时被无限精确地确定和预測。在理论上,测量過程对物理系统本身,并不會造成任何影响,并可以无限精确地进行。在量子力学中则不然,测量过程本身会对系统造成影响。{{cite web | last =Krips | first =Henry | authorlink = | coauthors = | title =Measurement in Quantum Theory | work =Stanford Encyclopedia of Philosophy | publisher = | date =Aug 22, 2007 | url =http://plato.stanford.edu/entries/qt-measurement/ | access-date =2006-10-05 | archive-date =2021-05-08 | archive-url =https://web.archive.org/web/20210508111958/https://plato.stanford.edu/entries/qt-measurement/ | dead-url =no }} 怎樣才能正確地理論描述對於一个可观察量的测量?設定一个量子系统的量子态,首先,將量子態分解为该可观察量的一组本征态的线性组合。测量过程可以視為對於本征态的一个[[投影]],测量结果是被投影的本征态的本征值。假設,按照某種程序製備出一個系綜,在這系綜裏,每一個量子態都與這量子態相同,現在對於這系綜裏的每一個量子態都進行一次測量,則可以获得所有可能的测量值(本徵值)的机率分布,每个测量值的概率等於量子態處於對應的本征态的[[概率幅]]的绝对值平方。{{rp|36-37, 96-100}} 因此,假設對於两个不同的可觀察量 AB做测量,改變測量顺序,例如從AB改變為BA,則可能直接影响测量结果。假若測量結果有所不同,則稱這兩個可觀察量為[[不相容可觀察量]];否則,稱這兩個可觀察量為[[不相容可觀察量|相容可觀察量]]。以數學術語表達,兩個不相容可觀察量AB的[[對易算符]]不等於零:{{rp|110-112}} :[\hat{A},\hat{B}]\ \stackrel{def}{=}\ \hat{A}\hat{B}-\hat{B}\hat{A}\ne 0。 === 不确定性原理 === {{Main|不确定性原理}} 不确定性原理表明,越能準確地設定粒子的位置,則越不能準確地設定粒子的動量,反之亦然,{{cite web | url =http://plato.stanford.edu/entries/qt-uncertainty/ | title =The Uncertainty Principle | author1 =Jan Hilgevoord | author2 =Jos Uffink | date =12 July 2016 | website =Stanford Encyclopedia of Philosophy | accessdate =2016-09-23 | archive-date =2013-12-02 | archive-url =https://web.archive.org/web/20131202050531/http://plato.stanford.edu/entries/qt-uncertainty/ | dead-url =no }}{{rp|引言}}以方程式表示為{{rp|110-114}} :\Delta x \Delta p \geq \frac{\hbar}{2}; 其中,\Delta x\Delta p分別為位置、動量的不確定性。 設想一個定域性的[[波包]],假設波包的尺寸為L .從計數波包的[[週期]]數N,可以知道其波數k: :k=2\pi N/L。 假若,計數N的不確定性為\Delta N=1,那麼,[[波數]]的不確定性是 :\Delta k=2\pi /L。 根據[[德布羅意假說]],P=\hbar k。因此,動量的不確定性是 :\Delta P=\hbar \Delta k=\frac{h}{L}。 由於粒子位置的不確定性是\Delta X\approx L/2,所以,這兩個不相容可觀察量的不確定性為{{cite book|author1=Vladimir B. Braginsky|author2=Farid Ya Khalili|title=Quantum Measurement|date=25 May 1995|publisher=Cambridge University Press|isbn=978-0-521-48413-8}}{{rp|5-6}} : \Delta P \Delta X \approx h/2。 === 全同粒子 === [[File:Asymmetricwave2.png|right|thumb|200px|在[[無限深方形阱]]裏,兩個全同費米子的反對稱性波函數繪圖。{{efn|1=反對稱性波函數為 [\sin(x)\sin(3y)-\sin(3x)\sin(y)]/\sqrt{2},\qquad 0\le x,y \le \pi 。注意到在 x=y 附近,概率幅絕對值很微小,兩個費米子趨向於彼此互相遠離對方。}}]] [[File:Symmetricwave2.png|right|thumb|200px|在[[無限深方形阱]]裏,兩個全同玻色子的對稱波函數繪圖。{{efn|1=對稱性波函數為 -[\sin(x)\sin(3y)+\sin(3x)\sin(y)]/\sqrt{2},\qquad 0\le x,y \le \pi 。注意到在 x=y 附近,概率幅絕對值較大,兩個玻色子趨向於彼此互相接近對方。}}]] {{Main|全同粒子|包立不相容原理}} 粒子具有很多種物理性質,例如[[質量]]、[[電荷]]、[[自旋]]等等。假若兩個粒子具有不同的性質,則可以藉著測量這些不同的性質來區分這兩個粒子。根據許多實驗獲得的結果,同種類的粒子具有完全相同的性質,例如,宇宙裏所有的電子都帶有相等數量的電荷。因此,無法依靠物理性質來區分同種類的粒子,必須使用另一種區分法,即跟蹤每一個粒子的軌道。只要能夠無限精確地測量出每一個粒子的位置,就不會搞不清楚哪一個粒子在哪裡。這個適用於經典力學的方法有一個問題,那就是它與量子力學的基本原理相矛盾。根據量子理論,在位置測量期間,粒子並不會保持明確的位置。粒子的位置具有[[概率性]]。隨著時間的流易,幾個粒子的量子態可能會移動蔓延,因此某些部分會互相重疊在一起。假若發生重疊事件,给每个粒子“挂上一个标签”的方法立刻就失去了意义,就無法區分在重疊區域的兩個粒子。{{rp|201ff}} [[全同粒子]]所呈現出的不可区分性,对量子态的[[对称性]],以及多粒子系统的[[统计力学]],有深远的影响。比如说,一个由全同粒子组成的多粒子系统量子态,在交换两个粒子“1”和粒子“2”时,可以证明,不是对称的 (|\psi _{12} \rang = + |\psi _{21} \rang) ,就是反对称的 (|\psi _{12} \rang = - |\psi _{21} \rang) 。具有对称性的粒子被称为[[玻色子]],具有反对称性的粒子被称为[[费米子]]。此外[[自旋]]的对换也形成对称:自旋为半数的粒子(如电子、[[質子|质子]]和[[中子]])是反对称的,因此是费米子;自旋为整数的粒子(如光子)是对称的,因此是玻色子。 由於费米子系統具有反对称性,費米子遵守[[泡利不相容原理]],即两个费米子无法占据同一状态{{rp|451}}。这个原理拥有极大的实用意义。它表明,在由原子组成的物质世界裡,电子无法同时占据同一状态,因此在最低状态被占据後,下一个电子必须占据次低的状态,直到所有的状态均被满足为止。这个现象决定了物质的物理和化学特性{{rp|204,214,218-221}}。 费米子与玻色子的状态的热分布也相差很大:玻色子遵循[[玻色-爱因斯坦统计]],而费米子则遵循[[费米-狄拉克统计]]{{rp|450}}。 === 量子纠缠 === [[File:EPR-Experiment Bohm 1676x516 zh.png|thumb|350px|right|假設一個零自旋中性[[π介子]]衰變成一個[[電子]]與一個[[正電子]],這兩個衰變產物各自朝著相反方向移動,雖然彼此之間相隔一段距離,它們仍舊會發生量子糾纏現象。]] {{Main|量子纠缠}} 假設兩個粒子在經過短暫時間彼此耦合之後,單獨攪擾其中任意一個粒子,儘管兩個粒子之間可能相隔很長一段距離,還是會不可避免地影響到另外一個粒子的性質,這種關聯現象稱為量子糾纏。往往由多个粒子组成的量子系统,其状态无法被分离为其组成的单个粒子的状态,在这种情况下,单个粒子的状态被称为是纠缠的。纠缠的粒子有惊人的特性,这些特性违背一般的直觉。比如说,对一个粒子的测量,可以导致整个系统的波包立刻塌缩,因此也影响到另一个、遥远的、与被测量的粒子纠缠的粒子。这个现象并不违背[[狭义相对论]],因为在量子力学的层面上,在测量粒子前,它们不能被單獨各自定义,实际上它们仍是一个整体。不过在测量它们之后,它们就会脱离量子纠缠的状态。{{rp|27-31}}{{rp|120ff}} === 量子退相干 === {{Main|量子退相干}} 作为一个基本理论,量子力学原则上,应该适用于任何大小的物理系统,也就是说不仅限于[[宏观|微观系统]],那么,它应该提供一个过渡到[[宏观]]經典物理的方法。量子现象的存在提出了一个问题,即怎样从量子力学的观点,解释宏观系统的經典现象。尤其无法直接看出的是,量子力学中的[[量子疊加]],在宏观世界怎樣呈現出來。1954年,爱因斯坦在给[[马克斯·玻恩]]的信中,就提出了怎样从量子力学的角度,来解释宏观世界的物理現象的问题,他指出仅仅量子力学现象太“小”无法解释这个问题。{{cite book|author=E. Joos et al.|title=''Decoherence and the Appearance of a Classical World in Quantum Theory''|url=https://archive.org/details/decoherenceappea0000unse|publisher=Springer|year=2003|isbn=3-540-00390-8}}{{rp|62-63}}这个问题的另一个例子是由薛定谔提出的[[薛定谔猫]]的思想实验。{{rp|2}} 後來,物理學者领会到,上述的思想实验,实际而言并不合乎現實,因为它们忽略了不可避免地与周围环境的相互作用,量子系統會因為這相互作用與環境[[關聯]]在一起。處於[[量子疊加|疊加態]]的量子系統非常容易受周围环境的影响,而且隨著時間流逝,這量子系統會與環境永無休止地越加深入[[量子糾纏|糾纏]],這現象稱為「馮紐曼無窮鏈」(Von Neumann's infinite chain)。在疊加態裏,幾個相互正交的量子態疊加在一起,彼此相干。量子退相干是一種過程,能夠將量子系統的[[密度矩陣|約化密度矩陣]]對角化,而相干性質就是表示於這約化密度矩陣的非對角元素,所以,疊加態的相干性質會快速消失,無法再被探測到,從而呈現出經典的統計性質。雖然量子系統的疊加態不再具有相干性質,整個量子系統與環境共同組成的聯合態仍舊具有相干性質。{{rp|19-21, 136-138}}{{cite journal|author=Schlosshauer, Maximilian|title="Decoherence, the Measurement Problem, and Interpretations of Quantum Mechanics"|date=2005-06-28|url=https://archive.org/details/arxiv-quant-ph0312059|journal=Reviews of Modern Physics|issue=76(2004), 1267–1305|arxiv = quant-ph/0312059}} 对于[[量子计算机]]来说,量子退相干也有实际意义。在一台量子计算机中,需要多个量子状态尽可能地长时间保持叠加。退相干时间短是一个非常大的技术问题,因為它會削弱量子疊加效應,但它也是一個必需的因素,因為儲存在計算機內的數據必需經過量子測量被讀出來。{{Citation | last =Zurek | first =Wojciech | title =Decoherence and the Transition from Quantum to Classical—Revisited | journal =Los Alamos Science | volume =27 | year =2002 | url =http://arxiv.org/abs/quant-ph/0306072 | accessdate =2014-09-26 | archive-date =2016-02-01 | archive-url =https://web.archive.org/web/20160201065420/http://arxiv.org/abs/quant-ph/0306072 | dead-url =no }} == 与其它物理理论的关系 == === 經典物理 === {{Image|zh-hans=Hamilton analogy zh-hans.svg|zh-hant=Hamilton analogy zh-hant.svg|thumb|200px|right|波動光學在短波長極限成為幾何光學,類似地,量子力學在普朗克常數趨零極限成為經典力學。基本而言,在[[普朗克常數]]趨零極限,可以從量子力學的[[薛丁格方程式]]推導出經典力學的[[哈密頓-亞可比方程式]]。詳盡細節,請參閱條目[[哈密顿-雅可比方程#波動方程式⇒粒子方程式|哈密頓-亞可比方程式]]。{{cite journal | last1 =Joas | first1 =Christian | last2 =Lehner | first2 =Christoph | title =The classical roots of wave mechanics: Schrödinger's transformations of the optical-mechanical analogy | journal =Studies in History and Philosophy of Modern Physics | volume =40 | issue =4 | pages =338-351 | date =2009 | url =http://quantum-history.mpiwg-berlin.mpg.de/eLibrary/fileserverPub/Joas-Lehner_2009_Optical-mechanical.pdf/V1_Joas-Lehner_2009_Optical-mechanical.pdf | issn =1355-2198 | access-date =2014-09-28 | archive-date =2013-07-09 | archive-url =https://web.archive.org/web/20130709010423/http://quantum-history.mpiwg-berlin.mpg.de/eLibrary/fileserverPub/Joas-Lehner_2009_Optical-mechanical.pdf/V1_Joas-Lehner_2009_Optical-mechanical.pdf | dead-url =no }}}} {{Main|經典物理|半經典物理學}} 量子力學的預測已被實驗核對至極高準確度,是在科學領域中,最為準確的理論之一。[[對應原理]]實現經典力學與量子力學之間的對應關係,根據對應原理,假若量子系统已達到某「經典極限」,則其物理行為可以很精确地用經典理论來描述;這經典極限可以是大[[量子數]]極限,也可以是[[普朗克常數]]趨零極限。實際而言,许多宏观系统都是用經典理论(如經典力学和电磁学)来做精确描述。因此在非常“大”的系统中,量子力学的特性應該会逐漸與經典物理的特性相近似,两者必須相互符合。{{cite book|author=W.M. de Muynck|title=Foundations of Quantum Mechanics, an Empiricist Approach|date=30 September 2002|publisher=Springer Science & Business Media|isbn=978-1-4020-0932-7}}{{rp|190-191}} 对应原理對於建立一个有效的量子力学模型是很重要的辅助工具。量子力学的数学基础相當廣泛寬鬆,它僅只要求量子系統的態向量屬於[[希尔伯特空间]],其[[可观察量]]是线性的[[厄米算符]],它并没有规定在实际情况下,应该选择哪一种希尔伯特空间、哪些厄米算符。因此,在实际情况下,必须选择相应的希尔伯特空间和算符来描写一个特定的量子系统。而对应原理则是做出这个选择的一个重要辅助工具。这个原理要求量子力学所做出的预言,在越来越大的系统中,逐渐近似經典理论的预言。这个大系统的极限,被称为“經典极限”或者“对应极限”。因此可以使用[[启发法]]的手段,来建立一个量子力学的模型,而这个模型的极限,就是相应的經典物理学的模型。{{rp|190-191}}{{cite book|author=J.R. Nielsen|title=The Correspondence Principle (1918 - 1923)|accessdate=30 August 2013|date=1 January 1976|publisher=Elsevier|isbn=978-0-08-087101-1}}{{rp|3ff}} 在經典系統與量子系統之間,[[相干性#量子相干性|量子相干]]是一種很明顯可以用來區分的性質,具有量子相干性的電子、光子等等微觀粒子可以處於量子疊加態,不具有量子相干性的棒球、老虎等等宏觀系統不可以處於量子疊加態。[[量子退相干]]可以用來解釋這些行為。一種應用這性質來區分的工具是[[貝爾不等式]],遭到量子糾纏的系統不遵守貝爾不等式,而量子退相干能夠將量子糾纏性質變換為經典統計性質,系統的物理行為因此可以用[[隱變數理論]]解釋,不再不遵守貝爾不等式。{{cite book | last1 =Haroche | first1 =Serge | last2 =Raimond | first2 =Jean-Michel | title =Exploring the Quantum: Atoms, Cavities, and Photons | publisher =Oxford University Press | edition =1st | date =2006 | isbn =978-0198509141 }}{{rp|80-82}}簡略而言,量子干涉是將幾個量子態的[[量子幅]]總和在一起,而經典干涉則是將幾個經典波動的[[波|波強]]總和在一起。對於微觀物體,整個系統的延伸尺寸超小於[[相干性|相干長度]],因此會產生長程[[量子糾纏]]與其它非定域現象,一些量子系統的特徵行為。通常,量子相干不會出現於宏觀系統。{{cite web |url=http://philsci-archive.pitt.edu/2328/1/handbook.pdf |title=Between classical and quantum |format=PDF |date= |accessdate=2012-08-19 |archive-date=2021-02-25 |archive-url=https://web.archive.org/web/20210225203130/http://philsci-archive.pitt.edu/2328/1/handbook.pdf |dead-url=no }} === 狹義相对论 === {{Main|狹義相對論}} 原本量子力學的表述所針對的模型,其對應極限為非相對論性古典力學。例如,眾所皆知的[[量子諧振子]]模型使用了非相對論性表達式來表達其[[動能]],因此,這模型是[[諧振子|古典諧振子]]的量子版本。{{rp|40-59}} 早期,對於合併量子力学与[[狭义相对论]]的试图,涉及到使用[[協變|協變方程式]],例如,[[克莱因-戈尔登方程]]或[[狄拉克方程式]],来取代薛定谔方程。这些方程雖然能夠很成功地描述许多量子现象,但它们目有某些不滿意的問題,它们无法描述在相对论性状況下,粒子的生成和湮滅。完整的[[量子场论|相对论性量子理论]]需要[[量子场论]]的關鍵发展。量子场论能夠将[[場 (物理)|场]]量子化(而不是一組固定數量的粒子)。第一个量子场论是[[量子电动力学]],它可以精確地描写[[电磁相互作用]]。{{rp|486-514}}[[量子電動力學]]其對於某些原子性質的理論預測,已被證實準確至108分之一。{{cite book |last=Feynman |first=Richard |authorlink=Richard Feynman |year=1985 |isbn=978-0-691-12575-6 |title=QED: The Strange Theory of Light and Matter |publisher=Princeton University Press}}{{rp|7}} 對於描述电磁系统,時常不需要使用到量子场论的全部功能。比较简单的方法,是将带电粒子当作处於經典电磁场中的量子力学物体。这个手段从量子力学的初期,就已经被使用了。比如说,[[氢原子]]的电子状态,可以近似地使用經典的 1/r 庫侖勢来计算。这就是所谓的半經典方法。但是,在电磁场中的量子起伏起一个重要作用的情况下(比如带电粒子发射一颗光子)这个近似方法就失效了。{{rp|145-160}} === 粒子物理學 === {{Main|強相互作用|弱相互作用}} 專門描述[[强相互作用]]、[[弱相互作用]]的量子場論已發展成功。[[强相互作用]]的量子场论稱為[[量子色动力学]],这个理论描述亞原子粒子,例如[[夸克]]、[[膠子|胶子]],它們彼此之间的相互作用。[[弱相互作用]]与[[电磁相互作用]]也被統一為單獨量子場論,稱為[[电弱相互作用]]。{{rp|1234-1236}} === 廣義相對論 === {{Main|量子引力|廣義相對論}} [[量子引力]]是對[[引力場]]進行量子化描述的理論,屬於[[萬有理論]]之一。物理學者發覺,建造引力的量子模型是一件非常艱難的研究。半經典近似是一種可行方法,推導出一些很有意思的預測,例如,[[霍金輻射]]等等。可是,由於[[廣義相對論]](至今為止,最成功的引力理論)與量子力學的一些基礎假說相互矛盾,表述出一個完整的量子引力理論遭到了嚴峻阻礙。嘗試結合[[廣義相對論]]與[[量子力學]]是熱門研究方向,為當前的物理學尚未解决的問題。當前主流嘗試理論有:[[超弦理論]]、[[迴圈量子重力理論]]等等。{{Cite journal |last=Smolin |first=Lee |title=Three Roads to Quantum Gravity |year=2001 |pages=129–148 |isbn=0-465-07835-4}}{{Cite journal |last=Kiefer |first=Claus |title=Quantum Gravity: General Introduction and Recent Developments |year=2005 |journal=[[Annalen der Physik]] |volume=15 |arxiv=gr-qc/0508120 |doi=10.1002/andp.200510175 |pages=129–148 |ref=harv |bibcode = 2006AnP...518..129K }} == 哲学观点 == {{unsolved|物理學|量子理論的描述怎樣成為做實驗所觀查到的大自然實在,這包括[[態疊加原理|量子態疊加]]、[[波函數塌縮]]、[[量子去相干]]等等?換句話說,這是一種[[量子測量|測量問題]],造成波函數塌縮為[[確定態]]的量子測量所倚賴的機制為何?}} {{Main|量子力學詮釋}} 量子力学是經歷最严格验证的物理理论之一。至今为止,尚未找到任何能夠推翻量子力学的实验数据。大多数物理学者认为,“几乎”在所有情况下,它正确地描写能量和物质的物理性质。虽然如此,量子力学中,依然存在着概念上的弱点和缺陷,除前面所述關於万有引力的量子理论的缺乏以外,現今,对於量子力学的[[量子力学诠释|詮释]]依然存在着嚴重争议。{{Cite book|author=曾谨言|title=量子力学教程:量子力学百年|publisher=科学出版社|isbn=7-03-010982-1|page=ix-xxi}}{{rp|4-5}} 從初始到現今,量子力學的各種反直覺論述與結果一直不停地引起在哲學、詮釋方面的強烈辯論。甚至一些基礎論點,例如,[[馬克斯·玻恩]]關於概率幅與概率分佈的[[玻恩定則|基本定則]],也需要經過數十年的嚴格思考論證,才被學術界接受。{{efn|玻恩詮釋波函數為在某時間、某位置找到粒子的概率幅。這是一種粒子論。波函數也可以詮釋為「在某時間、某位置發生相互作用的概率輻」。這較寬鬆的詮釋方式可以適用於波動論或粒子論。}}[[理察·費曼]]曾經說過一句銘言:「我認為我可以有把握地說,沒有人懂得量子力學!」The Character of Physical Law (1965) Ch. 6; also quoted in The New Quantum Universe (2003), by Tony Hey and Patrick Walters[[史蒂文·溫伯格]]承認:「依照我現在的看法,完全令人滿意的量子力學詮釋並不存在。」Weinberg, S. [http://arxiv.org/abs/1109.6462 "Collapse of the State Vector"] {{Wayback|url=http://arxiv.org/abs/1109.6462 |date=20210508112022 }}, Phys. Rev. A 85, 062116 (2012). 雖然在發表後已經過七十幾年光陰,[[哥本哈根詮釋]]仍舊是最為物理學者接受的對於量子力學的一種詮釋。它的主要貢獻者是[[尼尔斯·玻尔]]與[[沃纳·海森堡]]。根據這種詮釋,量子力學的概率性論述不是一種暫時補丁,並且最終將會被一種命定性理論取代,它必須被視為一種最終拋棄經典因果論思維的動作。在這裡,任何量子力學形式論的良好定義的應用必須將實驗設置納入考量,這是因為不同實驗狀況獲得的結果所具有的[[互補原理|互補性]]。{{rp|15-16}} 身為量子理論的創始者之一的愛因斯坦很不滿意這種非命定性的論述。他認為量子力學不具有完備性,他提出一系列反駁論述,其中最著名的就是[[愛因斯坦-波多爾斯基-羅森佯謬]]。這佯謬建立於[[爱因斯坦-波多尔斯基-罗森佯谬#定域實在論|定域實在論]]。假設局區域實在論成立,則量子力學不具有完備性。接近三十年以後,[[約翰·貝爾]]發佈論文表示,對於這個佯謬稍加理論延伸,就會導致對於量子力學與定域實在論出現不同的預言,因此可以做實驗檢試量子世界到底與哪種預言一致。Bell, John. On the Einstein Podolsky Rosen Paradox, Physics '''1''' 3, 195-200, Nov. 1964{{cite journal | title = Bell's inequality test: more ideal than ever | journal = Nature | date = 1999-03-18 | author = Aspect A | volume = 398 | pages = 189–90| doi = 10.1038/18296 | accessdate = 2010-09-08|bibcode = 1999Natur.398..189A | issue=6724}}為此,完成了很多相關實驗,這些實驗確定量子力學的預言正確無誤,定域實在論無法描述量子世界。{{cite web |url=http://plato.stanford.edu/entries/qm-action-distance/ |title=Action at a Distance in Quantum Mechanics (Stanford Encyclopedia of Philosophy) |publisher=Plato.stanford.edu |date=2007-01-26 |accessdate=2012-08-18 |archive-date=2021-05-08 |archive-url=https://web.archive.org/web/20210508112028/https://plato.stanford.edu/entries/qm-action-distance/ |dead-url=no }} [[休·艾弗雷特三世]]提出的[[多世界诠释]]认为,量子理论所做出的可能性的预言,全部會同步实现,这些现实成为彼此之间毫無關聯的[[多世界诠释|平行宇宙]]。在这種诠释裏,波函数不塌缩,它的发展是决定性的。但是由於隻身观察者无法存在於所有的平行宇宙裏,只能观察在身處的宇宙內發生的事件,而無法觀察到其它平行宇宙內發生的事件。这種诠释不需要特殊處理测量動作。在这理论裏,薛定谔方程無論何處無論何時都成立。對於任何測量動作,必須將整個系統,測量儀器與被測量物體,全部納入薛定谔方程的運算。{{Cite book|last1=Everett|first1=Hugh|url=http://www.pbs.org/wgbh/nova/manyworlds/pdf/dissertation.pdf|title=Theory of the Universal Wavefunction|publisher=Princeton University|year=1956, 1973|page=1-140|access-date=2012-07-16|archive-date=2012-10-16|archive-url=https://web.archive.org/web/20121016151021/http://www.pbs.org/wgbh/nova/manyworlds/pdf/dissertation.pdf|dead-url=no}}{{cite journal | last1 = Everett | first1 = Hugh | year = 1957 | title = Relative State Formulation of Quantum Mechanics | url = http://www.univer.omsk.su/omsk/Sci/Everett/paper1957.html | journal = Reviews of Modern Physics | volume = 29 | issue = | pages = 454–462 | bibcode = 1957RvMP...29..454E | doi = 10.1103/RevModPhys.29.454 | deadurl = yes | archiveurl = https://web.archive.org/web/20111027191052/http://www.univer.omsk.su/omsk/Sci/Everett/paper1957.html | archivedate = 2011年10月27日 | df = }}測量儀器與被測量物體所有可能的量子態都存在於一種真實的量子疊加,形成了[[量子糾纏|糾纏態]]。雖然平行宇宙具有命定性,觀察者意識到由概率主導的非命定行為,因為觀察者只能觀察到自身所在的宇宙。多世界诠释能夠透過貝爾的檢試實驗。近期研究發展將多世界诠释與[[量子退相干]]理論合併在一起來解釋主觀的波函數塌縮。由於量子退相干機制,糾纏態會快速地演化為[[密度矩陣#混合態|經典混合態]]。H. Dieter Zeh, [http://www.rzuser.uni-heidelberg.de/~as3/FP70.pdf On the Interpretation of Measurement in Quantum Theory] {{Wayback|url=http://www.rzuser.uni-heidelberg.de/~as3/FP70.pdf |date=20210304060505 }}, ''Foundation of Physics'', vol. 1, pp. 69–76, (1970). [[戴维·玻姆]]提出了一種非定域性的[[隱變量理論]],稱為[[導航波理論]]。在这種詮释裏,波函数被理解为粒子的一个[[導航波理論|導航波]]。从结果上,这个理论预言的实验结果,与非相对论哥本哈根诠释的预言完全一样,因此,使用实验手段无法鉴别这两个解释。虽然这个理论的预言是命定性的,但是由於不确定原理无法推测出隐变量的精确状态,其结果跟哥本哈根诠释的結果一样,使用導航波理論来解释,实验的结果具有概率性。至今为止,还不能确定这个解释是否能够扩展到相对论量子力学上去。[[路易·德布罗意]]和其他人也提出过类似的隐变量解释。{{Cite journal| first = David | last = Bohm | title = A Suggested Interpretation of the Quantum Theory in Terms of "Hidden Variables" I| journal = Physical Review | year = 1952 | volume = 85 | pages = 166–179 | doi = 10.1103/PhysRev.85.166|bibcode = 1952PhRv...85..166B }} {{Cite journal| first = David | last = Bohm | title = A Suggested Interpretation of the Quantum Theory in Terms of "Hidden Variables", II | journal = Physical Review | year = 1952 | volume = 85 | pages = 180–193 | doi = 10.1103/PhysRev.85.180|bibcode = 1952PhRv...85..180B }} == 应用 == 在许多现代技术装备中,量子效应起了重要的作用,例如,[[激光]]的工作機制是[[愛因斯坦]]提出的[[受激發射]]、[[電子顯微鏡|电子显微镜]]利用電子的[[波粒二象性]]來增加解析度、[[原子钟]]使用束縛於原子的[[電子]]從一個[[能級]]躍遷至另一個能級時所發射出的[[微波]]信號的[[頻率]]來計算與維持時間的準確性、[[核磁共振成像]]倚賴[[核磁共振]]機制來探測物體內部的結構。对[[半导体]]的研究导致了[[二极管]]和[[双极性晶体管|三极管]]的发明,這些都是現代電子系統與電子器件不可或缺的元件。{{rp|5-10}} 以下列出了一些量子力學的應用,但實際上其應用並不限於這些領域。 ===电子器件=== {{Main|电子器件}} 量子力学在电子器件中得到了广泛应用。比如[[发光二极管]]在日常照明中应用中越来越广泛{{cite web | url =https://scitechvista.nat.gov.tw/zh-tw/articles/c/5/1/10/62/172.htm | title =光電科技:現代的電光石火 | author =張守進 尤信介 | date = | publisher =科技部 | quote =由於發光二極體有這麼多優良的特性,因此在我們日常生活中的使用已經越來越普遍。. | access-date =2016-09-22 | archive-date =2021-05-08 | archive-url =https://web.archive.org/web/20210508112051/https://scitechvista.nat.gov.tw/zh-tw/articles/c/5/1/10/62/172.htm | dead-url =no }}。现代计算机的基础,[[微处理器]],由上亿个半导体[[晶体管]]集成,且随着晶体管数量的增加,晶体管中的量子效应越来越明显。量子力学对于解释和模拟半导体器件中的电学、光学、热学性质等尤其重要。{{rp|382-386}} 量子力学还是量子隧穿器件工作的基础。比如USB非易失性[[闪存]]中,信息的存储和读取都通过量子隧穿实现。{{cite web | url =http://spectrum.ieee.org/semiconductors/devices/the-tunneling-transistor | title =The Tunneling Transistor | last =Seabaugh | first =Alan | date =30 Sep 2013 | publisher =IEEE Spectrum | quote =The flash memory inside our USB sticks, cellphones, and other gadgets uses tunneling to inject electrons across oxide barriers into charge-trapping regions. | access-date =2016-09-21 | archive-date =2021-05-08 | archive-url =https://web.archive.org/web/20210508112051/https://spectrum.ieee.org/semiconductors/devices/the-tunneling-transistor | dead-url =no }} [[超导]]电子器件也与量子力学有着密切的关系。 ===计算机=== {{Main|电子计算机|量子計算機}} 相比于晶体管等电子器件,[[量子计算机]]的研制则更为前沿。在一些特定算法下,量子计算机的速度会比经典架构的计算机快成千上万倍(比如[[量子退火算法]])。经典计算机使用0和1作为[[位元|比特]],而量子计算机则使用[[量子位]]作为基本单位。量子位由不同的电子[[态叠加]]形成。{{rp|91-100}} ===宇宙學=== [[Image:Cmbr.svg|thumb|200px|由FIRAS儀器對COBE觀測的宇宙微波背景輻射光譜,為最精確測量的[[黑體輻射]]光譜性質,{{cite conference|last=White|first=M.|year=1999|title=Anisotropies in the CMB|booktitle=Proceedings of the Los Angeles Meeting, DPF 99|publisher=UCLA|accessdate=2008-12-18|arxiv=astro-ph/9903232 |bibcode= 1999dpf..conf.....W }}即使將圖像放大,誤差範圍也極小,無法由理論曲線中分辨觀測數據。]] {{Main|宇宙學|量子宇宙學}} 量子力學能夠用來解釋很多奇異的宇宙現象,例如,[[宇宙微波背景]]的[[頻譜]]可以用[[普朗克黑體輻射定律]]來解釋。宇宙微波背景證實了[[大爆炸理論]]的正確無誤,自此,[[穩態理論]]開始式微。從宇宙微波背景可以推論,早期宇宙非常炙熱、對於電磁輻射不透明、具有[[宇宙學原理|均質性]]與[[各向同性]],是標準的[[黑体 (物理学)|黑體]]。{{cite book|author=Jean-Louis Basdevant|title=Lectures on Quantum Mechanics|publisher=Springer Science & Business Media|isbn=978-0-387-37744-5}}{{rp|273}}{{cite book|author=Barbara Sue Ryden|title=Introduction to cosmology|url=https://archive.org/details/introductiontoco0000ryde|year=2003|publisher=Addison-Wesley|isbn=978-0-8053-8912-8}}{{rp|152}} 在[[恆星]]的生命終點,當所有核燃料都已用盡,恆星會開始[[引力坍缩]]的過程,最終可能變為[[白矮星]]、[[中子星]]或[[黑洞]]。這是因為[[包立不相容原理]]的作用。由於電子遵守包立不相容原理,因此在坍缩時,假若[[電子簡併壓力]]能夠克服[[引力]],就會形成白矮星,否則會繼續坍缩,由於中子也遵守包立不相容原理,這時假若[[简并态物质|中子簡併壓力]]能夠克服引力,則會形成中子星,否則就會坍缩成黑洞。{{cite book|author=Martin Bojowald|title=The Universe: A View from Classical and Quantum Gravity|date=5 November 2012|publisher=John Wiley & Sons|isbn=978-3-527-66769-7}}{{rp|286-287}} === 化学 === {{Main|化学|量子化學}} 任何物质的化学性質,均是由其原子或分子的电子结构所决定的。通过解析包括了所有相关的原子核和电子的多粒子薛定谔方程,可以计算出该原子或分子的电子结构。在实践中,人们认识到,要计算这样的方程实在太复杂,對於許多案例,必需使用简化的模型,找到可行的數學計算方法,才能夠找到近似的电子结构,從而确定物质的化学性質。{{rp|193-195}}實際上,[[量子電動力學]]是化學的基礎原理{{cite book|title=[[费曼物理学讲义|The Feynman Lectures on Physics]]||author1=Richard P. Feynman|author2=Robert B. Leighton|author3=Matthew Sands|publisher=Addison–Wesley|year=1964|volume=1|isbn=0-201-02115-3|pages=2-8}}。 量子力學可以詳細描述原子的電子結構與化學性質。對於只擁有一個束縛電子的[[氫原子]],[[薛丁格方程式]]有[[解析解]],可以計算出相關的[[能級]]與[[氫原子|氫原子軌域]],而且能級符合氫原子光譜實驗的數據,從每一種氫原子軌域可以得到對應的電子概率分佈。對於其它種原子(多電子原子),薛丁格方程式沒有解析解,只能得到近似解,可以計算出近似氫原子軌域的[[原子軌域|哈特里原子軌域]],形狀相同,但尺寸與能級模式不一樣。使用哈特里原子軌域,可以解釋原子的電子結構與化學性質,週期表的元素排列。{{rp|193-195}} 量子力學能夠解釋,在分子裏的束縛電子怎樣將分子內部的原子綑綁在一起。對於最為簡單,只擁有一個束縛電子的[[氫分子離子]]H2+,應用[[玻恩–奥本海默近似]](兩個原子核固定不動),[[薛丁格方程式]]有解析解,可以計算出它的[[分子軌域]]。但是對於其它更為複雜的分子,薛丁格方程式沒有解析解,只能得到近似解,只能計算出近似的分子軌域。[[理论化学]]中的分支,[[量子化学]]和[[计算化学]],專注於使用近似的薛定谔方程,来计算复杂的分子的结构及其化学性質。{{cite book|author1=David W. Oxtoby|author2=H. Pat Gillis|author3=Alan Campion|title=Principles of Modern Chemistry, 7th ed.|accessdate=28 August 2013|date=May 2011|publisher=Cengage Learning|isbn=978-0-8400-4931-5}}{{rp|235ff}} === 信息学 === {{Main|信息學|量子信息學}} 目前的研究聚焦於找到可靠與能夠直接处理量子态的方法。量子系統擁有一種特性,即對於量子數據的測量會不可避免地改變數據,這種特性可以用來偵測出任何竊聽動作。倚賴這特性,[[量子密碼學]]能夠保證[[通信]]安全性,使得通信双方能够产生并分享一个随机的,安全的[[密钥]],来加密和解密信息。比較遙遠的目標是發展出量子電腦。由於量子态具有量子叠加的特性,理论而言,量子電腦可以達成高度[[并行计算]],其計算速度有可能以指數函數快過普通電腦。另外,應用量子纏結特性與經典通訊理論,[[量子遙傳]]能夠將物體的量子態從某個位置傳送至另一個位置。這是正在積極進行的一門學術領域。{{cite book|author1=Michael A. Nielsen|author2=Isaac L. Chuang|title=Quantum Computation and Quantum Information: 10th Anniversary Edition|accessdate=30 August 2013|date=9 December 2010|publisher=Cambridge University Press|isbn=978-1-139-49548-6}} == 参见 == {{Portal|物理学}} {{cols|colwidth=35em}} * [[狄拉克符号]] * [[普朗克單位制]] * [[相空间表述]] * [[正規化]] * [[雙態系統]] {{colend}} == 註釋 == {{Notelist}} == 参考文献 == {{reflist|colwidth=30em}} == 外部链接 == {{Sister project links|s=no}} * [[国立交通大学]]物理系視聽教學:[http://ocw.nctu.edu.tw/course_detail.php?bgid=1&gid=3&nid=386#.VCuak4l0xwE 量子力学导论] {{Wayback|url=http://ocw.nctu.edu.tw/course_detail.php?bgid=1&gid=3&nid=386#.VCuak4l0xwE |date=20210508112113 }}。 * J. O'Connor and E. F. Robertson: [http://www-history.mcs.st-andrews.ac.uk/history/HistTopics/The_Quantum_age_begins.html A history of quantum mechanics.] * [https://web.archive.org/web/20080913201312/http://www.quantiki.org/wiki/index.php/Introduction_to_Quantum_Theory Introduction to Quantum Theory at Quantiki.] * [http://bethe.cornell.edu/ Quantum Physics Made Relatively Simple]: three video lectures by [[Hans Bethe]] ;课程材料 * [http://oyc.yale.edu/sites/default/files/notes_quantum_cookbook.pdf Quantum Cook Book] and [http://oyc.yale.edu/physics/phys-201#sessions PHYS 201: Fundamentals of Physics II] by [[拉馬穆蒂·尚卡爾|Ramamurti Shankar]], Yale OpenCourseware * [http://www.lightandmatter.com/lm/ The Modern Revolution in Physics] – an online textbook. * [[MIT OpenCourseWare]]: [https://ocw.mit.edu/courses/chemistry/ Chemistry] and [https://ocw.mit.edu/courses/physics/ Physics]. See [https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2016/ 8.04], [https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/index.htm 8.05] and [https://ocw.mit.edu/courses/physics/8-06-quantum-physics-iii-spring-2018/index.htm 8.06] * [http://www.physics.csbsju.edu/QM/ 5½ Examples in Quantum Mechanics] * [http://www.imperial.ac.uk/quantuminformation/qi/tutorials Imperial College Quantum Mechanics Course.] ;哲学 * {{cite SEP |url-id=qm |title=Quantum Mechanics |last=Ismael |first=Jenann}} * {{cite SEP |url-id=qt-measurement |title=Measurement in Quantum Theory |last=Krips |first=Henry}} {{-}} {{Quantum mechanics topics}} {{物理學分支}} {{Authority control}} [[Category:量子力学| ]]