
Citadel Protocol Specification

Dusk

January 26, 2024

Contents

1 Protocol overview 2
1.1 The parties involved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The elements involved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Protocol intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Cryptographic primitives 3
2.1 Elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Digital signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Hash functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Encryption schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 Proof systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.7 Merkle trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Protocol 6
3.1 Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Protocol flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 (user) request license() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.2 (LP) fetch license request() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.3 (LP) issue license() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.4 (user) fetch license() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.5 (user) use license() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.6 (user) request service() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.7 (SP) fetch session() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.8 (SP) grant service() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.1 License circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Security Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Implementation details 11
4.1 Elements structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Application layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1



1 Protocol overview

Citadel is a Self-Sovereign Identity (SSI) protocol built on top of Dusk that allows users of a given service to manage
their digital identities in a fully transparent manner. More specifically, every user can know which information about
them is shared with other parties, and accept or deny any request for personal information.

1.1 The parties involved

Citadel involves three (potentially different) parties:

• The user is the person who interacts with the wallet and requests licenses in order to claim their right to make
use of services.

• The Service Provider (SP) is the entity that offers a service to users. Upon verification that a service request
from a user is correct, it provides such service.

• The License Provider (LP) is the entity that receives requests for licenses from users, and upon acceptance,
issues them. The LP can be the same SP entity or a different one.

1.2 The elements involved

Below there is the list of the elements involved in the protocol. The details of their structure and their role are
explained in the following sections.

• A request is a set of information that the user sends to the network in order to inform the LP that they are
requesting a license. It includes an stealth address where the license will be sent to.

• A license is an asset that represents the right of a user to use a certain service. In particular, a license contains
a set of attributes that are associated to the requirements needed to make use of that service.

• A session is a set of public values sent by the user to the network that are associated with the initiation of the
use of a service.

• A session cookie is a set of values that allows the SP to verify that a license was used to open a session in their
service.

1.3 Properties

Citadel satisfies the following properties:

• Ownership: a user of a service is able to prove ownership of a license that allows them to use such a service,
without leaking any secret information.

• Membership: our solution gives the possibility to revoke licenses. Users can prove ownership of a valid license,
that has not been revoked, so it is still member of a given set of licenses.

• Unlinkability: nobody in the network can link any activity of the users with other activities done in the
network.

• Attribute Blinding: the user is capable of deciding which information they want to leak to the SP, blinding
the attributes and providing only the desired information.

• Decentralized License Usage: when using the licenses, all the participants of the network learn that a given
license has been used, without learning any secret information about the license or the user that owns it. This
prevents a malicious user of reusing a license that is not allowed to be used again, with different SP.
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1.4 Protocol intuition

The basic workflow of our protocol is as follows: users can request licenses to LPs, another entity that the user needs
to trust. As soon as the LP gets the request, it can be verified and the LP can decide to issue a license for that
user in the Blockchain, using a cryptographic approach that makes all the data private to anyone but the user. The
user can later decide to use the license to access a given service provided a by a third party, the SP. By means of a
zero-knowledge proof, the user will prove in a decentralized manner to the whole network that they can use a given
license, without revealing any secret information. The user will finally send a set of cryptographic elements, the session
cookie, to the SP. The SP will verify this session cookie using public information stored on the Blockchain, and will
grant the service upon successful verification.

2 Cryptographic primitives

In this section, we detail the cryptographic primitives used in Citadel. We briefly introduce Merkle trees, the com-
mitment scheme, encryption scheme, proof system, elliptic curves and hash functions used, specifying at each step the
concrete parameters with which each of the primitives is instantiated.

Notation. Throughout the document, we use the following conventions. Given a set S, we denote sampling an
element x uniformly at random from S by x ← S. Any group G used is of a large prime order, and we assume that
the discrete logarithm problem is hard in G. If two elements are denoted by the same letter in upper case and lower
case, e.g. a,A, this often signifies the fact that A is a public key corresponding to the secret key a.

2.1 Elliptic curves

BLS12-381 [2] and Jubjub [3] are the elliptic curves used. More precisely, let

q = 4002409555221667393417789825735904156556882819939007885332058136
124031650490837864442687629129015664037894272559787,

p = 5243587517512619047944774050818596583769055250052763782260365869
9938581184513.

Note that both are prime numbers, with bit-lengths 381 and 255, respectively. The curve BLS12-381 is the curve over
Fq defined by the equation

E : Y 2 = X3 + 4.

We have that E(Fq) has different subgroups G1,G2 such that #G1 = #G2 = p. This curve is pairing-friendly (with
embedding degree k = 12), so pairings are efficiently computable. More precisely, Citadel makes use of the bilinear
group

B = (p,G1,G2,GT , e : G1 ×G2 → GT ) .

By instantiating the zk-SNARK with the bilinear group B, we are be able to prove statements about satisfiability of
arithmetic circuits over Fp, the so-called scalar field of E.

Furthermore, we are interested in proving certain operations with the zk-SNARK, like the correct verification of a
Schnorr signature σ. Note that σ is an element of a certain elliptic curve J , but is represented as two coordinates in
the base field Fs of J . Therefore, the verification can be best represented as arithmetic constraints modulo s. While
it is possible to represent any NP statement using arithmetic modulo p to plug it into the zk-SNARK, this incurs into
a significant efficiency loss if not done carefully. The natural thing is to set s = p. Therefore, the signature scheme
must be instantiated with an elliptic curve over Fp. For this, let

d = −10240

10241
mod p.
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Citadel uses the Jubjub curve, defined by the equation

J : −X2 + Y 2 = 1 + dX2Y 2,

over Fp. In particular, it uses a subgroup J of order

t = 6554484396890773809930967563523245729705921265872317281365359162
392183254199,

which is a 252-bit prime.

The primes and groups defined here will be used through the rest of the document.

2.2 Digital signatures

The Schnorr Sigma protocol [15] is used, compiled with the Fiat–Shamir transformation [5, 14], as a signature scheme.
In particular, Citadel makes use of the standard scheme as well as a double-key version to be able to delegate
computations later in the protocol. Let G,G′ ← J.

The single-key signature scheme is as follows.

• Setup. Sample a secret key sk← Ft and set the corresponding public key pk = skG. Output (sk, pk).

• Sign. On input a message m and a secret key sk, sample r ← Ft and compute R = rG. Compute the challenge
c = H(R, pk,m), and set

u = r − csk.

Output the signature σ = (R, u).

• Verify. On input a public key pk, message m and signature σ = (R, u), compute c = H(R, pk,m) and check
whether the following equality holds:

R = uG+ cpk,

If so, accept the signature, otherwise reject.

The double-key signature scheme is as follows.

• Setup. Sample a secret key sk ← Ft and set the corresponding public key (pk, pk′) = (skG, skG′). Output
(sk, (pk, pk′)).

• Sign. On input a message m and a secret key sk, sample r ← Ft and compute (R,R′) = (rG, rG′). Compute
the challenge c = H(R,R′, pk,m), and set

u = r − csk.

Output the signature σ = (R,R′, u).

• Verify. On input a public key pk, message m and signature σ = (R,R′, u), compute c = H(R,R′, pk,m) and
check whether the following equalities hold:

R = uG+ cpk,

R′ = uG′ + cpk′.

If so, accept the signature, otherwise reject.

The signature scheme is existentially unforgeable under chosen-message attacks under the discrete logarithm assump-
tion, in the random oracle model [10, Section 12.5.1]. While the Schnorr signature scheme is widely known, the
double-key version has not been used before, to the best of our knowledge. In Citadel, as it happens in the Phoenix
transaction model [4], this is leveraged to allow for delegation of proof computations without the need to share one’s
secret key with the helper.
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2.3 Hash functions

Citadel uses hash functions H mostly in the case where given y, we want to prove knowledge of x such that H(x) = y.
We will do so with PlonK, which requires statements to be written as arithmetic constraints modulo a large prime
number p. Most hash function evaluations do not naturally translate to this language, incurring in a big efficiency
loss. To avoid this, the Poseidon hash function [8] H : Fp → Fp, where Fp is the set of tuples of Fp-elements of any
length, will be used whenever we compute a hash of which we need to produce a proof. This is because Poseidon is
purposefully designed to work with modular arithmetic.

2.4 Encryption schemes

A symmetric encryption scheme [11] based on Poseidon is also used, as described below.

Poseidon is built by applying the sponge construction [1] to a permutation π : Ft
p → Ft

p, for t = r + c, where

• r is the rate, i.e. the amount of Fp-elements of the input that can be processed in a call to π.

• c is the capacity, which is a part of the permutation that is never output by the hash, and is required for security.

The permutation π is composed of linear (matrix multiplication over Fp) and non-linear (S-boxes) operations. Some
rounds are full rounds, and apply S-boxes to the whole input, and others are partial rounds, in which an S-box is
applied to a single Fp-element.

In this case, Citadel uses Poseidon-128 to target 128-bit security. Following the recommendations of [8], parameters
are set as r = 4 and c = 1, so that a hash in the Merkle tree can be computed with a single call to the permutation.
Internally, a permutation performs RF = 8 full rounds and RP = 59 partial rounds, and uses S(x) = x5 as the S-box.

The encryption scheme [11] is a variation of the one-time pad encryption in the field. It uses Poseidon as a pseudoran-
dom function to extend an agreed-upon symmetric key and encrypt the message. Therefore, the encryption scheme is
perfectly secure under the random oracle model.

Concretely, the encryption works as follows. Given a message in F`
q, each Fq-component is added to the corresponding

component of the key. The key is obtained using Poseidon by extending the symmetric-encryption key, which is an
elliptic curve point, to obtain a key with the same size of the message. The initialization vector contains the two
coordinates of the key and a nonce, it is passed to the Poseidon iteration which extends the key and outputs the
ciphertext. The sender sends the encryption along with the nonce and the information needed to compute the key, so
the receiver can use Poseidon with the same key and nonce to decrypt the message.

2.5 Commitments

As commitment scheme, Citadel uses the Pedersen commitment [13], which we now describe.

• Setup. Sample and output the commitment key ck = (G,G′)← J2.

• Commit. On input a value v, sample randomness r ← Ft and output

c = Comck(v; r) = vG+ rG′.

• Open. Reveal v, r. With these, anyone can recompute the commitment and check if it matches c.

This scheme is perfectly hiding, and computationally binding under the discrete logarithm assumption.

2.6 Proof systems

Citadel uses the zk-SNARK PlonK [7] as its proof system. PlonK allows anyone to prove satisfiability of any arithmetic
circuit modulo a prime. Since arithmetic circuit satisfiability is an NP-complete problem, this proof system will allow
us to prove any statement in NP. PlonK makes use of the KZG polynomial commitment scheme [9], as described in [7].
This requires instantiating PlonK over a pairing-friendly group, which is described in Section 2.1.
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Below is a summary the efficiency of PlonK, for a circuit with n multiplication gates and ` public inputs.

• Proving time: O(n) group and field operations.

• Verification time: O(1 + `) group and field operations.

• Proof size: O(1) group and field elements.

PlonK is sound in the algebraic group model [6], and statistically zero-knowledge. A complete and explicit description
of the scheme can be found in [7, Section 8].

2.7 Merkle trees

A Merkle tree [12] is a tree that contains at every vertex the hash of its children vertices. More precisely, we consider
a perfect k-ary tree of height h. The single vertex at level 0 is called the root of the tree, and the kh vertices at level h
are called the leaves. Given a vertex in level i, the k vertices in level i+1 that are adjacent to it are called its children.
Two vertices are each other’s sibling if they are children of the same vertex.

To each vertex in the tree, we will recursively associate a value, starting from the leaves.1 Let H be a hash function.

• Level h: leaves are initialized to a null value. Through the lifetime of the tree, they will progressively be filled
from left to right with values.

• Level 0 ≤ i < h: each vertex has k children c1, . . . , ck at level i+1. We set the value of the vertex to H(c1, . . . , ck).

The tree is updated every time a new value is written into a leaf, by updating the h+ 1 elements in the path from the
new value to the root. In particular, this means that the root changes after every update. A nice feature of Merkle
trees is that, given a root r, it is easy to prove that a value x is in a leaf of a tree with root r. The proof works as
follows:

• Prove. For i = h, . . . , 1, let xi be the vertex that is in level i and is in the unique path from x to the root. Let
yi,1, . . . , yi,k−1 be the k − 1 siblings of xi. Output

(x, (y1,1, . . . , y1,k−1), . . . , (yh,1, . . . , yh,k−1)).

• Verify. Parse input as (xh, (y1,1, . . . , y1,k−1), . . . , (yh,1, . . . , yh,k−1)), where xh is the purported value and yi,1, . . . , yi,k−1
are the purported siblings at level i. For i = h− 1, . . . , 0, compute2

xi = H (xi+1, yi+1,1, . . . , yi+1,k−1) .

This allows for proving membership in a set of size kh by sending O(kh) values. This proof is sound provided that
the hash function is collision resistant [10, Section 5.6.2]. For our application, we will set k = 4 and h = 17.

3 Protocol

3.1 Keys

Let G,G′ ← J be two generators for the subgroup J of order t of the Jubjub elliptic curve. In Citadel, each party
involved in the protocol holds a pair of static keys with the following structure:

• Secret key: sk = (a, b), where a, b← Ft.

• Public key: pk = (A,B), where A = aG and B = bG.

We use the subindices user,SP, LP to indicate the owner of the keys, e.g. pkuser denotes the public key of the user.

1We will often abuse notation and write the vertex to refer to the value associated with the vertex.
2To be precise, the prover also has to send dlog2 ke bits for each level, specifying the position of xi with respect to its siblings, so that

the verifier knows in which order to arrange the inputs of the hash.
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3.2 Protocol flow

In this section, we describe the workflow of Citadel in detail. Citadel includes two subprotocols, the license request
protocol, and the service request protocol. They are depicted in Figure 1.

BlockchainUser License Provider

request_license

fetch_license_request

issue_license

fetch_license

request_service

grant_service

use_license

fetch_session

Service Provider

License Request P ot col

Serv ce Request P ot col

Figure 1: Overview of the protocol messages exchanged between the user, Dusk’s network, the LP and the SP.

3.2.1 (user) request license()

1. Compute a license stealth address (lpk, Rlic) belonging to the user, using the user’s own public key, as follows.

1.1. Sample r uniformly at random from Ft.

1.2. Compute a symmetric Diffie–Hellman key k = rAuser.

1.3. Compute a one-time public key lpk = HPoseidon(k)G+Buser.

1.4. Compute Rlic = rG.

2. Compute the license secret key lsk = HPoseidon(k) + buser and an additional key klic = HPoseidon(lsk)G.

3. Compute the request stealth address (rpk, Rreq) using the LP’s public key, as follows.

3.1. Sample r uniformly at random from Ft.

3.2. Compute a symmetric Diffie–Hellman key kreq = rALP.

3.3. Compute a one-time public key rpk = HPoseidon(kreq)G+BLP.

3.4. Compute Rreq = rG.

4. Encrypt data using the key kreq: enc = Enckreq((lpk, Rlic)||klic; nonce).

5. Send the following request to the network: req = ((rpk, Rreq), enc, nonce).

3.2.2 (LP) fetch license request()

The LP checks continuously the network to detect any incoming license requests addressed to them:

1. Compute k̃req = aLPRreq.
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2. Check if rpk
?
= HPoseidon(k̃req)G+BLP.

3. Decrypt enc using nonce and k̃req: ((lpk, Rlic), klic) = Deck̃req(enc; nonce).

3.2.3 (LP) issue license()

1. Upon receiving a request from a user, define a set of attributes associated to the license, collect them (e.g. by
concatenation) in a variable attr data, and compute a digital signature as follows:

siglic = sign single keyskLP(lpk, attr data).

2. Encrypt the signature and the attributes using the license key:

enc = Encklic(siglic||attr data; nonce).

3. Send the following license to the network:

lic = ((lpk, Rlic), enc, nonce).

3.2.4 (user) fetch license()

In order to receive the license, the user must scan all incoming transactions the following way:

1. Compute k̃lic = HPoseidon(lsk)G.

2. Check if lpk
?
= HPoseidon(k̃lic)G+Buser.

3. Decrypt enc using nonce and k̃lic: (siglic, attr data) = Deck̃lic(enc; nonce).

3.2.5 (user) use license()

When willing to use a license, the user must open a session with an specific SP by executing a call to the license
contract. The user performs the following steps:

1. Create a zero-knowledge proof π using the gadget depicted in Figure 2.

2. Issue a transaction that calls the license contract, which includesπ. Notice that here, the user signs session hash
using lsk. Likewise, the user here will need to compute lpk′ = lskG′.

3. The network validators execute the license smart contract, which verifies π. Upon success, the following session
will be added to a shared list of sessions:

session = {session hash, session id, comhash
0 , com1, com2},

where session hash = HPoseidon(pkSP||rsession), and rsession is sampled uniformly at random from Ft.

3.2.6 (user) request service()

To request a service to the SP, the user establishes communication with it using a secure channel, and provides the
session cookie that follows:

sc = {pkSP, rsession, session id, pkLP, attr data, c, s0, s1, s2}

3.2.7 (SP) fetch session()

Receive a session from the list of sessions, where session.session id = sc.session id.
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3.2.8 (SP) grant service()

Grant or deny the service upon verification of the following steps:

1. Check whether the values (attr data, pkLP, c) included in the sc are correct.

2. Check whether the opening (pkSP, rsession) included in the sc matches the session hash found in the session.

3. Check whether the openings ((pkLP, s0), (attr data, s1), (c, s2)) included in the sc match the
commitments (comhash

0 , com1, com2) found in the session.

Furthermore, the SP might want to prevent the user from using the license more than once (e.g. this is a single-use
license, like entering a concert). This is done through the computation of session id. The deployment of this part of
the circuit has two different possibilities:

• By setting c = 0 (or directly remove this input from the circuit), the license can be used only once.

• If the SP requests the user to set a custom value for c (e.g. the date of an event), the license can be reused only
under certain conditions.

3.3 Circuits

3.3.1 License circuit

verify_sig_single_key()

pkLP

priv. priv.

hash()

verify_merkle_proof()
priv.priv.

merkle_proof

hash()
priv.

priv.

true
(pub.)

true
(pub.)

session_id
(pub.)

root

hash()
priv. priv.

attr_data

siglic

priv.

clpk

verify_sig_double_key()
priv.pub.

true
(pub.)

sigsession_hashsession_hash

lpk'

hash()
priv. priv.

com1

(pub.)
com0

(pub.)

commit()
priv. priv.

com2

(pub.)

commit()
priv. priv.

s0 s1 s2

hash

Figure 2: Arithmetic circuit for proving a license’s ownership.

3.4 Security Discussion

We now put the spotlight on the security of the protocol we have designed, which grants the following features:

• Ownership: the circuit used in Citadel verifies a signature siglic of a message (lpkuser, attr data), using the
public key of SP, pkSP. Also, a double key signature sigsession hash of a session hash is verified in-circuit, referring
to the session, and thus the SP, the user wants to use.

siglic verification ensures that the license attribute data is correct, and sigsession hash ensures that the user owns
such a license, as only they can compute lpkuser using the license secret key and compute such a signature, while
keeping all these values private, so the SP cannot learn the identity of the user. An adversary would not be able
to prove ownership as long as lskuser is not leaked to them. This is true under the discrete logarithm assumption.
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• Membership: the fact that lpkuser is part of the signature siglic, ensures that the license is assigned to a specific
license of the Blockchain, and thus, to a specific user of this Blockchain. The circuit verifies a Merkle proof of
the license, which is included in the Merkle tree of licenses. This ensures that the license the user is proving
ownership of has been transacted in the Blockchain, and is a valid license at the moment of issuing the transaction
containing the proof. An adversary willing to successfully prove ownership of a transferred license would have to
craft a new pair (lpkuser, attr data) that verifies siglic. This is infeasible under the discrete logarithm assumption.
Furthermore, the crafted lpkuser would have to be a collision verifying the Merkle proof.

• Unlinkability: a one-time key pair (lpkuser, Ruser) is sent to the LP, instead of the public key pk. The fact that
the information about the user learned by the LP is a set of one-time values ensures that the identity of the user
sending these values cannot be linked to other activities done in the network. The key lpkuser is computed from
the value lskuser, which is kept secret and used only once. As there are no other values involved in the process
that identifies the user, they cannot be linked to the user’s identity. This is true as long as the user does not
reuse lskuser. On the other hand, lpkuser = HPoseidon(rA)G+ B, where r is sampled at random and (A,B) is the
user’s public key. As both HPoseidon(rA)G and B are only known by the user, there is no way an adversary can
learn B, because lpkuser can be decomposed in many ways.

From the point of view of the network, there is unlinkability as well: when issuing the transaction, no one is able
to link the used license to the SP, as the pkSP is blinded by committing to this value using the HPoseidon() function
and a random value s0. An adversary would not be able to learn pkSP as long as the randomness involved in
the hashing process is not leaked to them. This is true assuming that the hashing function is collision-resistant.
On the other hand, both attr data and c could leak information about the service and the user. For this reason,
we commit to these values (as they are scalars instead of points, we can use the Pedersen commitment which
requires fewer constraints than the hash function). An adversary would not be able to learn (attr data, c) as
long as the random values involved in the commitments are not leaked to them. This is true under the discrete
logarithm assumption, which holds for the Pedersen commitment.

• Attribute Blinding: As described previously, the user provides an opening for the commitment com1 to the
SP, thus leaking the attr data value. An adversary would not be able to provide a valid opening as long as
the randomness involved in the commitment of attr data is not leaked to them. This is true under the discrete
logarithm assumption, which holds for the Pedersen commitment.

Depending on the use case, it could be desirable that the values involved in attr data are kept totally or partially
private. In this scenario, and as suggested in Section 4.2, the user could provide an additional proof of knowledge,
proving to the SP that they know the opening of com1 and that this abides to some conditions.

• Decentralized License Usage: the circuit computes the hash of lpk′user and a public challenge c, resulting
in session id. The format of the c value could change in different scenarios. Taking the example of proving
ownership of a ticket for an event, ideally, c would be the date of such an event. If a network checking if a given
session id has been previously seen results in the following equation holding

session id list.contains(session id)
?
= 1,

it means that someone already entered the event with the same license. As such, we ensure that a user cannot
use the same license multiple times, nor compute valid proofs for other users. lpk′user is fixed in advance, as such,
session id will always be the same for a given public input c, which needs to be validated by the SP.

Finally, our protocol allows for delegation of the ZKP generation to a trusted machine that we call a proof helper, in
order to speed up the proving process, under certain conditions. The fact that we use a double-key Schnorr signature
means that the user can relate in-circuit the license public key lpkuser with lpk′user. Additionaly, lpk′user can only be
computed by the user and is only known to them. These properties make this value suitable for computing the unique
value session id. That way, the computation of the proof can be delegated to another machine by providing them the
circuit inputs, and as we can observe, the license secret key lskuser is not included. As such, it never has to leave the
user device (what would be a very bad security practice). As such, a malicious proof helper will not be able to use the
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license of the user by impersonating them. However, it will learn which license in the tree is being used, and which
LP issued it.

4 Implementation details

4.1 Elements structure

Here we describe the elements involved in Citadel. How they are used in the protocol is described in Section 3.

• Request : the structure of a request includes the encryption of a stealth address belonging to the user and where
the license has to be sent to, and a symmetric key shared between the user and the LP.

Element Type Description
(rpk, Rreq) StealthAddress Stealth address for the LP.
enc PoseidonCipher[6] Encryption of a symmetric keys and of user’s stealth address

where the license has to be sent to.
nonce BlsScalar Randomness needed to compute enc.

• License: asset that represents the right of a user to use a given service. A license has the following structure:

Element Type Description
(lpk, Rlic) StealthAddress License stealth address of the user.
enc PoseidonCipher[4] Encryption of the data of some user attributes and signature

of these data.
nonce BlsScalar Randomness needed to compute enc.

• SessionCookie: a session cookie is a secret value only known to the user and the SP. It contains a set of openings
to a given set of commitments. The structure is as follows:

Element Type Description
pkSP JubJubAffine Public key of the SP.
rsession BlsScalar Randomness for computing the session hash.
session id BlsScalar ID of a session opened using a license.
pkLP JubJubAffine Public key of the LP.
attr data JubJubScalar Specific data concerning the attributes of the user.
c JubJubScalar Challenge value.
s0 JubJubScalar Randomness used to compute comhash

0 .
s1 BlsScalar Randomness used to compute com1.
s2 BlsScalar Randomness used to compute com2.

• Session: a session is a public struct known by all the validators. The structure is as follows:

Element Type Description
session hash BlsScalar Hash of the SP’s public key together with rsession.
session id BlsScalar ID of a session opened using a given license.
comhash

0 BlsScalar Hash of the public key of the LP with s0.
com1 JubJubExtended Pedersen commitment of the attributes data using s1.
com2 JubJubExtended Pedersen commitment of the c value using s2.

• CitadelProverParameters: a prover needs some auxiliary parameters to compute the proof that proves the
ownership of a license. Some of the items of this table are related to the session and session cookie elements.
The structure is as follows:
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Element Type Description
lpk JubJubAffine License public key of the user.
lpk′ JubJubAffine A variation of the license public key of the user computed with

a different generator.
siglic Signature Signature of the license attributes data.
comhash

0 BlsScalar Hash of the public key of the LP with s0.
com1 JubJubExtended Pedersen commitment of the attributes data using s1.
com2 JubJubExtended Pedersen commitment of the c value using s2.
session hash BlsScalar Hash of the SP’s public key together with rsession.
sig session hash SignatureDouble Signature of the session hash signed by the user.
merkle proof Opening Membership proof of the license in the Merkle tree of licenses.

4.2 Application layer

In the previous subsection, we explained how a user sends a ZKP on-chain to use a license. In this process, the network
validates that an unknown license has been used, and a session is opened. When the user communicates off-chain
with the SP, they provide a session cookie to verify that the session is opened on-chain and the arguments are correct.
One of these arguments, the attribute data attr data, is what defines the license (e.g., a ticket token, a set of personal
information...), and this data is leaked to the SP. However, some use cases could require attribute data to be verified
according to some conditions, for instance, leaking the information only partially. We now introduce a scheme to
perform several attribute verifications off-chain.

In our scheme, each SP decides which requirements the users need to meet, and provides a circuit that performs such
checks. Then, when the user wants to use a service, will provide the session cookie as explained in the generic protocol,
with the difference that shall not include the opening to com1. Instead, will provide a ZKP computed out of the
circuit required by the SP. For this to work, an agreement between the different involved parties is needed, i.e. both
LPs and SPs will need to agree on the language (or encoding) used to create the attributes of the license. In such
regard, the value attr data used in the license becomes the hash of some specific attributes, as follows:

attr data = HPoseidon(attr0, attr1, ..., attrN , rattr),

where rattr has to be a random value known by the user and the LP. For instance, the public key stored in their ID card.

The SP will accept the service if the user provides a valid session cookie and a valid proof out of the following sample
circuit, where the value com1 included in the public inputs must be equal to the value session.com1:

hash()
priv. priv.

attr0

com1

(pub.)

commit()
priv. priv.

s1

attr1 attr2 rattr

cond()
priv.

true
(pub.)

Figure 3: Arithmetic circuit for proving attributes off-chain.

The above circuit from Figure 3 can include as many conditions as desired for the attributes.
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