Struct nalgebra::linalg::givens::GivensRotation
source · pub struct GivensRotation<T: ComplexField> { /* private fields */ }
Expand description
A Givens rotation.
Implementations§
source§impl<T: ComplexField> GivensRotation<T>
impl<T: ComplexField> GivensRotation<T>
sourcepub fn new_unchecked(c: T::RealField, s: T) -> Self
pub fn new_unchecked(c: T::RealField, s: T) -> Self
Initializes a Givens rotation from its components.
The components are copies as-is. It is not checked whether they describe an actually valid Givens rotation.
sourcepub fn new(c: T, s: T) -> (Self, T)
pub fn new(c: T, s: T) -> (Self, T)
Initializes a Givens rotation from its non-normalized cosine an sine components.
sourcepub fn try_new(c: T, s: T, eps: T::RealField) -> Option<(Self, T)>
pub fn try_new(c: T, s: T, eps: T::RealField) -> Option<(Self, T)>
Initializes a Givens rotation form its non-normalized cosine an sine components.
sourcepub fn cancel_y<S: Storage<T, U2>>(v: &Vector<T, U2, S>) -> Option<(Self, T)>
pub fn cancel_y<S: Storage<T, U2>>(v: &Vector<T, U2, S>) -> Option<(Self, T)>
Computes the rotation R
required such that the y
component of R * v
is zero.
Returns None
if no rotation is needed (i.e. if v.y == 0
). Otherwise, this returns the norm
of v
and the rotation r
such that R * v = [ |v|, 0.0 ]^t
where |v|
is the norm of v
.
sourcepub fn cancel_x<S: Storage<T, U2>>(v: &Vector<T, U2, S>) -> Option<(Self, T)>
pub fn cancel_x<S: Storage<T, U2>>(v: &Vector<T, U2, S>) -> Option<(Self, T)>
Computes the rotation R
required such that the x
component of R * v
is zero.
Returns None
if no rotation is needed (i.e. if v.x == 0
). Otherwise, this returns the norm
of v
and the rotation r
such that R * v = [ 0.0, |v| ]^t
where |v|
is the norm of v
.
sourcepub fn rotate<R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>>(
&self,
rhs: &mut Matrix<T, R2, C2, S2>
)where
ShapeConstraint: DimEq<R2, U2>,
pub fn rotate<R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>>(
&self,
rhs: &mut Matrix<T, R2, C2, S2>
)where
ShapeConstraint: DimEq<R2, U2>,
Performs the multiplication rhs = self * rhs
in-place.
sourcepub fn rotate_rows<R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>>(
&self,
lhs: &mut Matrix<T, R2, C2, S2>
)where
ShapeConstraint: DimEq<C2, U2>,
pub fn rotate_rows<R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>>(
&self,
lhs: &mut Matrix<T, R2, C2, S2>
)where
ShapeConstraint: DimEq<C2, U2>,
Performs the multiplication lhs = lhs * self
in-place.
Trait Implementations§
source§impl<T: Clone + ComplexField> Clone for GivensRotation<T>where
T::RealField: Clone,
impl<T: Clone + ComplexField> Clone for GivensRotation<T>where
T::RealField: Clone,
source§fn clone(&self) -> GivensRotation<T>
fn clone(&self) -> GivensRotation<T>
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl<T: Debug + ComplexField> Debug for GivensRotation<T>where
T::RealField: Debug,
impl<T: Debug + ComplexField> Debug for GivensRotation<T>where
T::RealField: Debug,
impl<T: Copy + ComplexField> Copy for GivensRotation<T>where
T::RealField: Copy,
Auto Trait Implementations§
impl<T> RefUnwindSafe for GivensRotation<T>where
T: RefUnwindSafe,
<T as ComplexField>::RealField: RefUnwindSafe,
impl<T> Send for GivensRotation<T>
impl<T> Sync for GivensRotation<T>
impl<T> Unpin for GivensRotation<T>where
T: Unpin,
<T as ComplexField>::RealField: Unpin,
impl<T> UnwindSafe for GivensRotation<T>where
T: UnwindSafe,
<T as ComplexField>::RealField: UnwindSafe,
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.