Struct nalgebra::linalg::Hessenberg
source · pub struct Hessenberg<T: ComplexField, D: DimSub<U1>>where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,{ /* private fields */ }
Expand description
Hessenberg decomposition of a general matrix.
Implementations§
source§impl<T: ComplexField, D: DimSub<U1>> Hessenberg<T, D>where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D> + Allocator<T, DimDiff<D, U1>>,
impl<T: ComplexField, D: DimSub<U1>> Hessenberg<T, D>where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D> + Allocator<T, DimDiff<D, U1>>,
sourcepub fn new(hess: OMatrix<T, D, D>) -> Self
pub fn new(hess: OMatrix<T, D, D>) -> Self
Computes the Hessenberg decomposition using householder reflections.
sourcepub fn new_with_workspace(
hess: OMatrix<T, D, D>,
work: &mut OVector<T, D>
) -> Self
pub fn new_with_workspace(
hess: OMatrix<T, D, D>,
work: &mut OVector<T, D>
) -> Self
Computes the Hessenberg decomposition using householder reflections.
The workspace containing D
elements must be provided but its content does not have to be
initialized.
sourcepub fn unpack(self) -> (OMatrix<T, D, D>, OMatrix<T, D, D>)
pub fn unpack(self) -> (OMatrix<T, D, D>, OMatrix<T, D, D>)
Retrieves (q, h)
with q
the orthogonal matrix of this decomposition and h
the
hessenberg matrix.
sourcepub fn unpack_h(self) -> OMatrix<T, D, D>
pub fn unpack_h(self) -> OMatrix<T, D, D>
Retrieves the upper trapezoidal submatrix H
of this decomposition.
Trait Implementations§
source§impl<T: Clone + ComplexField, D: Clone + DimSub<U1>> Clone for Hessenberg<T, D>where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
impl<T: Clone + ComplexField, D: Clone + DimSub<U1>> Clone for Hessenberg<T, D>where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
source§fn clone(&self) -> Hessenberg<T, D>
fn clone(&self) -> Hessenberg<T, D>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl<T: Debug + ComplexField, D: Debug + DimSub<U1>> Debug for Hessenberg<T, D>where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
impl<T: Debug + ComplexField, D: Debug + DimSub<U1>> Debug for Hessenberg<T, D>where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
impl<T: ComplexField, D: DimSub<U1>> Copy for Hessenberg<T, D>where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
OMatrix<T, D, D>: Copy,
OVector<T, DimDiff<D, U1>>: Copy,
Auto Trait Implementations§
impl<T, D> !RefUnwindSafe for Hessenberg<T, D>
impl<T, D> !Send for Hessenberg<T, D>
impl<T, D> !Sync for Hessenberg<T, D>
impl<T, D> !Unpin for Hessenberg<T, D>
impl<T, D> !UnwindSafe for Hessenberg<T, D>
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.