pub trait SimdComplexField: 'static + SubsetOf<Self> + SupersetOf<f64> + Field<Output = Self> + Clone + Neg + Send + Sync + Any + Debug + NumAssignOps<Self> + NumOps<Self, Self> + PartialEq<Self> {
    type SimdRealField: SimdRealField<SimdBool = Self::SimdBool>;

Show 55 methods fn from_simd_real(re: Self::SimdRealField) -> Self; fn simd_real(self) -> Self::SimdRealField; fn simd_imaginary(self) -> Self::SimdRealField; fn simd_modulus(self) -> Self::SimdRealField; fn simd_modulus_squared(self) -> Self::SimdRealField; fn simd_argument(self) -> Self::SimdRealField; fn simd_norm1(self) -> Self::SimdRealField; fn simd_scale(self, factor: Self::SimdRealField) -> Self; fn simd_unscale(self, factor: Self::SimdRealField) -> Self; fn simd_floor(self) -> Self; fn simd_ceil(self) -> Self; fn simd_round(self) -> Self; fn simd_trunc(self) -> Self; fn simd_fract(self) -> Self; fn simd_mul_add(self, a: Self, b: Self) -> Self; fn simd_abs(self) -> Self::SimdRealField; fn simd_hypot(self, other: Self) -> Self::SimdRealField; fn simd_recip(self) -> Self; fn simd_conjugate(self) -> Self; fn simd_sin(self) -> Self; fn simd_cos(self) -> Self; fn simd_sin_cos(self) -> (Self, Self); fn simd_tan(self) -> Self; fn simd_asin(self) -> Self; fn simd_acos(self) -> Self; fn simd_atan(self) -> Self; fn simd_sinh(self) -> Self; fn simd_cosh(self) -> Self; fn simd_tanh(self) -> Self; fn simd_asinh(self) -> Self; fn simd_acosh(self) -> Self; fn simd_atanh(self) -> Self; fn simd_log(self, base: Self::SimdRealField) -> Self; fn simd_log2(self) -> Self; fn simd_log10(self) -> Self; fn simd_ln(self) -> Self; fn simd_ln_1p(self) -> Self; fn simd_sqrt(self) -> Self; fn simd_exp(self) -> Self; fn simd_exp2(self) -> Self; fn simd_exp_m1(self) -> Self; fn simd_powi(self, n: i32) -> Self; fn simd_powf(self, n: Self::SimdRealField) -> Self; fn simd_powc(self, n: Self) -> Self; fn simd_cbrt(self) -> Self; fn simd_horizontal_sum(self) -> Self::Element; fn simd_horizontal_product(self) -> Self::Element; fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField) { ... } fn simd_to_exp(self) -> (Self::SimdRealField, Self) { ... } fn simd_signum(self) -> Self { ... } fn simd_sinh_cosh(self) -> (Self, Self) { ... } fn simd_sinc(self) -> Self { ... } fn simd_sinhc(self) -> Self { ... } fn simd_cosc(self) -> Self { ... } fn simd_coshc(self) -> Self { ... }
}
Expand description

Lane-wise generalisation of ComplexField for SIMD complex fields.

Each lane of an SIMD complex field should contain one complex field.

Required Associated Types§

Type of the coefficients of a complex number.

Required Methods§

Builds a pure-real complex number from the given value.

The real part of this complex number.

The imaginary part of this complex number.

The modulus of this complex number.

The squared modulus of this complex number.

The argument of this complex number.

The sum of the absolute value of this complex number’s real and imaginary part.

Multiplies this complex number by factor.

Divides this complex number by factor.

The absolute value of this complex number: self / self.signum().

This is equivalent to self.modulus().

Computes (self.conjugate() * self + other.conjugate() * other).sqrt()

Computes the sum of all the lanes of self.

Computes the product of all the lanes of self.

Provided Methods§

The polar form of this complex number: (modulus, arg)

The exponential form of this complex number: (modulus, e^{i arg})

The exponential part of this complex number: self / self.modulus()

Cardinal sine

Cardinal cos

Implementors§