SuperLU  5.2.0
Data Structures | Macros | Functions
slu_dcomplex.h File Reference

Header file for complex operations. More...

This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Data Structures

struct  doublecomplex
 

Macros

#define DCOMPLEX_INCLUDE
 
#define z_add(c, a, b)
 Complex Addition c = a + b. More...
 
#define z_sub(c, a, b)
 Complex Subtraction c = a - b. More...
 
#define zd_mult(c, a, b)
 Complex-Double Multiplication. More...
 
#define zz_mult(c, a, b)
 Complex-Complex Multiplication. More...
 
#define zz_conj(a, b)
 
#define z_eq(a, b)   ( (a)->r == (b)->r && (a)->i == (b)->i )
 Complex equality testing. More...
 

Functions

void z_div (doublecomplex *, doublecomplex *, doublecomplex *)
 Complex Division c = a/b. More...
 
double z_abs (doublecomplex *)
 Returns sqrt(z.r^2 + z.i^2) More...
 
double z_abs1 (doublecomplex *)
 Approximates the abs. Returns abs(z.r) + abs(z.i) More...
 
void z_exp (doublecomplex *, doublecomplex *)
 Return the exponentiation. More...
 
void d_cnjg (doublecomplex *r, doublecomplex *z)
 Return the complex conjugate. More...
 
double d_imag (doublecomplex *)
 Return the imaginary part. More...
 
doublecomplex z_sgn (doublecomplex *)
 SIGN functions for complex number. Returns z/abs(z) More...
 
doublecomplex z_sqrt (doublecomplex *)
 Square-root of a complex number. More...
 

Detailed Description

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

The source code is distributed under BSD license, see the file License.txt at the top-level directory.

 
 – SuperLU routine (version 2.0) –
Univ. of California Berkeley, Xerox Palo Alto Research Center,
and Lawrence Berkeley National Lab.
November 15, 1997
Contains definitions for various complex operations.
This header file is to be included in source files z*.c

Macro Definition Documentation

#define DCOMPLEX_INCLUDE
#define z_add (   c,
  a,
 
)
Value:
{ (c)->r = (a)->r + (b)->r; \
(c)->i = (a)->i + (b)->i; }
#define z_eq (   a,
 
)    ( (a)->r == (b)->r && (a)->i == (b)->i )
#define z_sub (   c,
  a,
 
)
Value:
{ (c)->r = (a)->r - (b)->r; \
(c)->i = (a)->i - (b)->i; }
#define zd_mult (   c,
  a,
 
)
Value:
{ (c)->r = (a)->r * (b); \
(c)->i = (a)->i * (b); }
#define zz_conj (   a,
 
)
Value:
{ \
(a)->r = (b)->r; \
(a)->i = -((b)->i); \
}
#define zz_mult (   c,
  a,
 
)
Value:
{ \
double cr, ci; \
cr = (a)->r * (b)->r - (a)->i * (b)->i; \
ci = (a)->i * (b)->r + (a)->r * (b)->i; \
(c)->r = cr; \
(c)->i = ci; \
}

Function Documentation

void d_cnjg ( doublecomplex r,
doublecomplex z 
)
double d_imag ( doublecomplex )
double z_abs ( doublecomplex )
double z_abs1 ( doublecomplex )
void z_div ( doublecomplex ,
doublecomplex ,
doublecomplex  
)
void z_exp ( doublecomplex ,
doublecomplex  
)

Here is the call graph for this function:

doublecomplex z_sqrt ( doublecomplex )