#[repr(C)]
pub struct DualQuaternion<T> { pub real: Quaternion<T>, pub dual: Quaternion<T>, }
Expand description

A dual quaternion.

Indexing

DualQuaternions are stored as [..real, ..dual]. Both of the quaternion components are laid out in i, j, k, w order.

Example


let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);

let dq = DualQuaternion::from_real_and_dual(real, dual);
assert_eq!(dq[0], 2.0);
assert_eq!(dq[1], 3.0);

assert_eq!(dq[4], 6.0);
assert_eq!(dq[7], 5.0);

NOTE: As of December 2020, dual quaternion support is a work in progress. If a feature that you need is missing, feel free to open an issue or a PR. See https://github.com/dimforge/nalgebra/issues/487

Fields§

§real: Quaternion<T>

The real component of the quaternion

§dual: Quaternion<T>

The dual component of the quaternion

Implementations§

Normalizes this quaternion.

Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);

let dq_normalized = dq.normalize();

relative_eq!(dq_normalized.real.norm(), 1.0);

Normalizes this quaternion.

Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let mut dq = DualQuaternion::from_real_and_dual(real, dual);

dq.normalize_mut();

relative_eq!(dq.real.norm(), 1.0);

The conjugate of this dual quaternion, containing the conjugate of the real and imaginary parts..

Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);

let conj = dq.conjugate();
assert!(conj.real.i == -2.0 && conj.real.j == -3.0 && conj.real.k == -4.0);
assert!(conj.real.w == 1.0);
assert!(conj.dual.i == -6.0 && conj.dual.j == -7.0 && conj.dual.k == -8.0);
assert!(conj.dual.w == 5.0);

Replaces this quaternion by its conjugate.

Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let mut dq = DualQuaternion::from_real_and_dual(real, dual);

dq.conjugate_mut();
assert!(dq.real.i == -2.0 && dq.real.j == -3.0 && dq.real.k == -4.0);
assert!(dq.real.w == 1.0);
assert!(dq.dual.i == -6.0 && dq.dual.j == -7.0 && dq.dual.k == -8.0);
assert!(dq.dual.w == 5.0);

Inverts this dual quaternion if it is not zero.

Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);
let inverse = dq.try_inverse();

assert!(inverse.is_some());
assert_relative_eq!(inverse.unwrap() * dq, DualQuaternion::identity());

//Non-invertible case
let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
let dq = DualQuaternion::from_real_and_dual(zero, zero);
let inverse = dq.try_inverse();

assert!(inverse.is_none());

Inverts this dual quaternion in-place if it is not zero.

Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);
let mut dq_inverse = dq;
dq_inverse.try_inverse_mut();

assert_relative_eq!(dq_inverse * dq, DualQuaternion::identity());

//Non-invertible case
let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
let mut dq = DualQuaternion::from_real_and_dual(zero, zero);
assert!(!dq.try_inverse_mut());

Linear interpolation between two dual quaternions.

Computes self * (1 - t) + other * t.

Example
let dq1 = DualQuaternion::from_real_and_dual(
    Quaternion::new(1.0, 0.0, 0.0, 4.0),
    Quaternion::new(0.0, 2.0, 0.0, 0.0)
);
let dq2 = DualQuaternion::from_real_and_dual(
    Quaternion::new(2.0, 0.0, 1.0, 0.0),
    Quaternion::new(0.0, 2.0, 0.0, 0.0)
);
assert_eq!(dq1.lerp(&dq2, 0.25), DualQuaternion::from_real_and_dual(
    Quaternion::new(1.25, 0.0, 0.25, 3.0),
    Quaternion::new(0.0, 2.0, 0.0, 0.0)
));

Creates a dual quaternion from its rotation and translation components.

Example
let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let trans = Quaternion::new(5.0, 6.0, 7.0, 8.0);

let dq = DualQuaternion::from_real_and_dual(rot, trans);
assert_eq!(dq.real.w, 1.0);

The dual quaternion multiplicative identity.

Example

let dq1 = DualQuaternion::identity();
let dq2 = DualQuaternion::from_real_and_dual(
    Quaternion::new(1.,2.,3.,4.),
    Quaternion::new(5.,6.,7.,8.)
);

assert_eq!(dq1 * dq2, dq2);
assert_eq!(dq2 * dq1, dq2);

Cast the components of self to another type.

Example
let q = DualQuaternion::from_real(Quaternion::new(1.0f64, 2.0, 3.0, 4.0));
let q2 = q.cast::<f32>();
assert_eq!(q2, DualQuaternion::from_real(Quaternion::new(1.0f32, 2.0, 3.0, 4.0)));

Creates a dual quaternion from only its real part, with no translation component.

Example
let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);

let dq = DualQuaternion::from_real(rot);
assert_eq!(dq.real.w, 1.0);
assert_eq!(dq.dual.w, 0.0);

Trait Implementations§

Used for specifying relative comparisons.
The default tolerance to use when testing values that are close together. Read more
A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more
The inverse of AbsDiffEq::abs_diff_eq.
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Converts this type into a mutable reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Returns the “default value” for a type. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
The returned type after indexing.
Performs the indexing (container[index]) operation. Read more
Performs the mutable indexing (container[index]) operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The type of the norm.
Computes the norm.
Computes the squared norm.
Multiply self by n.
Divides self by n.
Returns the multiplicative identity element of Self, 1. Read more
Sets self to the multiplicative identity element of Self, 1.
Returns true if self is equal to the multiplicative identity. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
The default relative tolerance for testing values that are far-apart. Read more
A test for equality that uses a relative comparison if the values are far apart.
The inverse of RelativeEq::relative_eq.
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
The inclusion map: converts self to the equivalent element of its superset.
Checks if element is actually part of the subset Self (and can be converted to it).
Use with care! Same as self.to_superset but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
The default ULPs to tolerate when testing values that are far-apart. Read more
A test for equality that uses units in the last place (ULP) if the values are far apart.
The inverse of UlpsEq::ulps_eq.
Returns the additive identity element of Self, 0. Read more
Returns true if self is equal to the additive identity.
Sets self to the additive identity element of Self, 0.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Should always be Self
The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Checks if self is actually part of its subset T (and can be converted to it).
Use with care! Same as self.to_subset but without any property checks. Always succeeds.
The inclusion map: converts self to the equivalent element of its superset.
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.