| Crates.io | aether_shell |
| lib.rs | aether_shell |
| version | 0.1.2 |
| created_at | 2026-01-08 21:03:27.954943+00 |
| updated_at | 2026-01-14 19:23:49.099616+00 |
| description | The world's first multi-agent shell with typed functional pipelines and multi-modal AI |
| homepage | https://github.com/nervosys/AetherShell |
| repository | https://github.com/nervosys/AetherShell |
| max_upload_size | |
| id | 2031080 |
| size | 3,651,811 |
The world's first multi-agent shell with typed functional pipelines and multi-modal AI.
Built in Rust for safety and performance, featuring revolutionary AI protocols found nowhere else.
Quick Start • Features • Examples • TUI Guide • Docs • Contributing
# Install from source
git clone https://github.com/nervosys/AetherShell && cd AetherShell
cargo install --path . --bin ae
# Launch interactive TUI (recommended)
ae --tui
# Or classic REPL
ae
# Typed pipelines — not text streams!
[1, 2, 3, 4, 5] | map(fn(x) => x * 2) | sum()
# => 30
# AI query
ai("Explain quantum computing in simple terms")
# AI with vision
ai("Describe this image", {images: ["photo.jpg"]})
# AI agent with tool access
agent("Find all TODO comments in src/", ["ls", "cat", "grep"])
# 130+ MCP tools
mcp_tools() | len() # => 130
📝 Note: Set
OPENAI_API_KEYfor AI features:export OPENAI_API_KEY="sk-..."
🤖 AI-Native Shell
|
💎 Typed Pipelines
|
🧠 ML Primitives
|
🎨 Beautiful TUI
|
AetherShell is the only shell combining these capabilities:
| Feature | AetherShell | Traditional Shells | Nushell |
|---|---|---|---|
| AI Agents with Tools | ✅ | ❌ | ❌ |
| Multi-modal AI (Vision/Audio/Video) | ✅ | ❌ | ❌ |
| MCP Protocol (130+ tools) | ✅ | ❌ | ❌ |
| Neural Networks Built-in | ✅ | ❌ | ❌ |
| Hindley-Milner Types | ✅ | ❌ | ✅ |
| Typed Pipelines | ✅ | ❌ | ✅ |
| Agent-to-Agent Protocol (A2A) | ✅ | ❌ | ❌ |
| Consensus Protocol (NANDA) | ✅ | ❌ | ❌ |
# Deploy an AI agent that can use shell tools
agent("Analyze the project structure and find large files", ["ls", "cat", "wc"])
# Agent with configuration
agent({
goal: "Find security issues in the codebase",
tools: ["grep", "cat", "ls"],
max_steps: 10,
dry_run: true # Preview actions first
})
# Analyze images
ai("What's in this screenshot?", {images: ["screenshot.png"]})
# Process audio
ai("Transcribe and summarize this meeting", {audio: ["meeting.mp3"]})
# Video analysis
ai("Extract the key steps from this tutorial", {video: ["tutorial.mp4"]})
# Structured data processing — not text parsing!
ls("./src")
| where(fn(f) => f.ext == ".rs" && f.size > 1000)
| map(fn(f) => {name: f.name, kb: f.size / 1024})
| sort_by(fn(f) => f.kb, "desc")
| take(5)
# Statistical operations
[1, 2, 3, 4, 5] | sum() # => 15
[10, 20, 30] | avg() # => 20.0
[1, 2, 1, 3] | unique() # => [1, 2, 3]
{a: 1, b: 2} | values() # => [1, 2]
# 130 tools across 27 categories
let tools = mcp_tools()
print(len(tools)) # => 130
# Filter by category
mcp_tools({category: "development"}) # git, cargo, npm, etc.
mcp_tools({category: "machinelearning"}) # ollama, tensorboard, etc.
mcp_tools({category: "kubernetes"}) # kubectl, helm, k9s, etc.
# Execute tools via MCP
mcp_call("git", {command: "status"})
# Create a neural network
let brain = nn_create("agent", [4, 8, 2])
# Evolutionary optimization
let pop = population(100, {genome_size: 10})
let evolved = evolve(pop, fitness_fn, {generations: 50})
# Reinforcement learning
let agent = rl_agent("learner", 16, 4)
Launch the beautiful terminal UI with ae --tui:
| Tab | Description |
|---|---|
| Chat | Conversational AI with multi-modal support |
| Agents | Deploy and monitor AI agent swarms |
| Media | View images, play audio, preview videos |
| Help | Quick reference and documentation |
Keyboard shortcuts:
Tab — Switch tabsEnter — Send message / activateSpace — Select media filesq — QuitCtrl+C — Force quit📖 Full guide: docs/TUI_GUIDE.md
git clone https://github.com/nervosys/AetherShell
cd AetherShell
cargo install --path . --bin ae
cargo install aether_shell
Get syntax highlighting, snippets, and integrated REPL:
cd editors/vscode
npm install && npm run compile
# Press F5 to test
# AI Provider (required for AI features)
export OPENAI_API_KEY="sk-..."
# Agent permissions
export AGENT_ALLOW_CMDS="ls,git,curl,python"
# Alternative AI backend
export AETHER_AI="ollama" # or "openai"
# Store keys in OS credential manager (recommended)
ae keys store openai sk-your-key-here
# View stored keys (masked)
ae keys list
| Document | Description |
|---|---|
| Quick Reference | One-page syntax guide |
| TUI Guide | Terminal UI documentation |
| Type System | Type inference details |
| MCP Servers | Tool integration guide |
| AI Backends | Provider configuration |
| Security | Security assessment |
| File | Topic |
|---|---|
| 00_hello.ae | Basic syntax |
| 05_ai.ae | AI integration |
| 06_agent.ae | Agent deployment |
| 09_tui_multimodal.ae | Multi-modal TUI |
# Run all tests (90 library tests)
cargo test --lib
# Run specific test suites
cargo test --test eval # Evaluator tests
cargo test --test mcp # MCP protocol tests
cargo test --test tui_ # TUI tests
Test coverage: 140+ tests covering core functionality, MCP protocol, TUI, AI backends, neural networks, and OS tools.
We welcome contributions! See our development setup:
git clone https://github.com/nervosys/AetherShell
cd AetherShell
cargo build
cargo test --lib
Licensed under the Apache License 2.0.
Ready to experience the future of shell interaction?
ae --tui