| Crates.io | ai_baby_generator |
| lib.rs | ai_baby_generator |
| version | 67.0.53 |
| created_at | 2026-01-06 02:40:05.809+00 |
| updated_at | 2026-01-06 02:40:05.809+00 |
| description | High-quality integration for https://supermaker.ai/image/ai-baby-generator/ |
| homepage | https://supermaker.ai/image/ai-baby-generator/ |
| repository | https://github.com/qy-upup/ai-baby-generator |
| max_upload_size | |
| id | 2025036 |
| size | 12,289 |
This crate provides a simple and efficient way to generate hypothetical baby images based on provided parent images. It is designed to be a convenient tool for exploring potential future family resemblances.
To use ai-baby-generator in your Rust project, add the following to your Cargo.toml file:
toml
[dependencies]
ai-baby-generator = "0.1.0" # Replace with the latest version
Here are a few examples demonstrating how to use the ai-baby-generator crate:
Example 1: Basic Image Generation rust use ai_baby_generator::generate_baby_image; use image::{ImageBuffer, Rgb};
fn main() -> Result<(), String> { // Load parent images (replace with actual image loading logic) let parent1_image_path = "path/to/parent1.jpg"; let parent2_image_path = "path/to/parent2.jpg";
let parent1_image: ImageBuffer<Rgb<u8>, Vec<u8>> = image::open(parent1_image_path)
.map_err(|e| format!("Failed to open parent1 image: {}", e))?
.to_rgb8();
let parent2_image: ImageBuffer<Rgb<u8>, Vec<u8>> = image::open(parent2_image_path)
.map_err(|e| format!("Failed to open parent2 image: {}", e))?
.to_rgb8();
// Generate the baby image
let baby_image = generate_baby_image(&parent1_image, &parent2_image)?;
// Save the generated image (replace with actual image saving logic)
baby_image.save("baby.png").map_err(|e| format!("Failed to save baby image: {}", e))?;
println!("Baby image generated successfully!");
Ok(())
}
Example 2: Handling Errors
This example demonstrates how to gracefully handle potential errors during image generation. rust use ai_baby_generator::generate_baby_image; use image::{ImageBuffer, Rgb};
fn main() { // Load parent images (replace with actual image loading logic) let parent1_image_path = "path/to/parent1.jpg"; let parent2_image_path = "path/to/parent2.jpg";
let parent1_image: Result<ImageBuffer<Rgb<u8>, Vec<u8>>, String> = image::open(parent1_image_path)
.map_err(|e| format!("Failed to open parent1 image: {}", e))
.map(|img| img.to_rgb8());
let parent2_image: Result<ImageBuffer<Rgb<u8>, Vec<u8>>, String> = image::open(parent2_image_path)
.map_err(|e| format!("Failed to open parent2 image: {}", e))
.map(|img| img.to_rgb8());
match (parent1_image, parent2_image) {
(Ok(img1), Ok(img2)) => {
match generate_baby_image(&img1, &img2) {
Ok(baby_image) => {
if let Err(e) = baby_image.save("baby.png") {
eprintln!("Failed to save baby image: {}", e);
} else {
println!("Baby image generated successfully!");
}
}
Err(e) => eprintln!("Error generating baby image: {}", e),
}
}
(Err(e), _) => eprintln!("Error loading parent1 image: {}", e),
(_, Err(e)) => eprintln!("Error loading parent2 image: {}", e),
}
}
Example 3: Integrating with a Web Server (Hypothetical)
This is a conceptual example, as the crate provided is a stub. It illustrates how the crate could be integrated into a web application using a framework like rocket or actix-web.
rust
// Note: This example is conceptual and requires a web framework.
// It assumes the ai-baby-generator crate performs actual image generation.
// use rocket::form::{Form, FromForm}; // use rocket::response::content::Html; // use rocket::fs::TempFile;
// #[derive(FromForm)] // struct ImageUpload<'r> { // parent1: TempFile<'r>, // parent2: TempFile<'r>, // }
// #[post("/generate", data = "")]
// async fn generate(data: Form<ImageUpload<'_>>) -> Html
// // Generate the baby image using ai-baby-generator // // let baby_image = generate_baby_image(&parent1_image, &parent2_image).unwrap();
// // Return the generated image as HTML (implementation details omitted)
// // Html(format!("", base64_encode(baby_image)))
// Html("
image).MIT
This crate is part of the ai-baby-generator ecosystem. For advanced features and enterprise-grade tools, visit: https://supermaker.ai/image/ai-baby-generator/