async-ops

Crates.ioasync-ops
lib.rsasync-ops
version1.1.0
sourcesrc
created_at2021-11-26 16:46:10.286194
updated_at2022-04-19 22:12:40.775371
descriptionUse std::ops traits with Futures
homepage
repositoryhttps://github.com/saserr/async-ops
max_upload_size
id488086
size66,146
Sanjin (saserr)

documentation

https://docs.rs/async-ops/

README

async-ops

CI codecov License

This crate provides a way to use some std::ops traits with Futures. To be able to use a std::ops trait with a Future, first you need to wrap the Future with Async using async_ops::on. Then, as long the Future::Output type implements a supported std::ops trait, then the same std::ops trait will be implemented by the Async instance.

Another option is to wrap a Future with Async using async_ops::assignable! to enable usage of the Assign variants of std::ops traits on the Future.

Example

When writing async code it is common to do operations that are supported through std::ops. For example, adding to numbers might look like this:

use futures_executor::block_on;

// Immediately returning a number is done for simplicity and production code
// wouldn't just immediately return a value.
let a = async { 40 };
let b = async { 2 };

let result = async { a.await + b.await };

assert_eq!(42, block_on(result));

Actually, the above code is not optimally implemented because a and b are await-ed sequentially, instead of concurrently. The appropriate solution is to use join! to be able to concurrently await both values like this:

use futures_executor::block_on;
use futures_util::join;

let a = async { 40 };
let b = async { 2 };

let result = async {
  let (a, b) = join!(a, b);
  a + b
};

assert_eq!(42, block_on(result));

Or, just use async_ops::on to do the same thing like the above example in one line:

use futures_executor::block_on;

let a = async { 40 };
let b = async { 2 };

let result = async { (async_ops::on(a) + b).await };

assert_eq!(42, block_on(result));

Note that the async_ops::on example will also concurrently await both values.

Supported std::ops traits

Add

Async implements Add<Rhs> where Rhs: Future when the wrapped Future::Output type implements Add<Rhs::Output>. The resulting type of the addition is Async<impl Future<Output = <Future::Output as Add<Rhs::Output>>::Output>>.

use futures_executor::block_on;

let a = async { 40 };
let b = async { 2 };

let result = async { (async_ops::on(a) + b).await };

assert_eq!(42, block_on(result));
AddAssign

Async implements AddAssign<Rhs> where Rhs: Future when the wrapped Future type implements Assignable<<Async<Future> as Add<Rhs>>::Output>, which in turn requires the Future::Output type to implement Add<Rhs::Output>.

use futures_executor::block_on;

let a = async { 40 };
let b = async { 2 };

let result = async {
  async_ops::assignable!(a);
  a += b;
  a.await
};

assert_eq!(42, block_on(result));
BitAnd

Async implements BitAnd<Rhs> where Rhs: Future when the wrapped Future::Output type implements BitAnd<Rhs::Output>. The resulting type of the bitwise and is Async<impl Future<Output = <Future::Output as BitAnd<Rhs::Output>>::Output>>.

use futures_executor::block_on;

let a = async { 110 };
let b = async { 59 };

let result = async { (async_ops::on(a) & b).await };

assert_eq!(42, block_on(result));
BitAndAssign

Async implements BitAndAssign<Rhs> where Rhs: Future when the wrapped Future type implements Assignable<<Async<Future> as BitAnd<Rhs>>::Output>, which in turn requires the Future::Output type to implement BitAnd<Rhs::Output>.

use futures_executor::block_on;

let a = async { 110 };
let b = async { 59 };

let result = async {
  async_ops::assignable!(a);
  a &= b;
  a.await
};

assert_eq!(42, block_on(result));
BitOr

Async implements BitOr<Rhs> where Rhs: Future when the wrapped Future::Output type implements BitOr<Rhs::Output>. The resulting type of the bitwise or is Async<impl Future<Output = <Future::Output as BitOr<Rhs::Output>>::Output>>.

use futures_executor::block_on;

let a = async { 40 };
let b = async { 10 };

let result = async { (async_ops::on(a) | b).await };

assert_eq!(42, block_on(result));
BitOrAssign

Async implements BitOrAssign<Rhs> where Rhs: Future when the wrapped Future type implements Assignable<<Async<Future> as BitOr<Rhs>>::Output>, which in turn requires the Future::Output type to implement BitOr<Rhs::Output>.

use futures_executor::block_on;

let a = async { 40 };
let b = async { 10 };

let result = async {
  async_ops::assignable!(a);
  a |= b;
  a.await
};

assert_eq!(42, block_on(result));
BitXor

Async implements BitXor<Rhs> where Rhs: Future when the wrapped Future::Output type implements BitXor<Rhs::Output>. The resulting type of the bitwise xor is Async<impl Future<Output = <Future::Output as BitXor<Rhs::Output>>::Output>>.

use futures_executor::block_on;

let a = async { 38 };
let b = async { 12 };

let result = async { (async_ops::on(a) ^ b).await };

assert_eq!(42, block_on(result));
BitXorAssign

Async implements BitXorAssign<Rhs> where Rhs: Future when the wrapped Future type implements Assignable<<Async<Future> as BitXor<Rhs>>::Output>, which in turn requires the Future::Output type to implement BitXor<Rhs::Output>.

use futures_executor::block_on;

let a = async { 38 };
let b = async { 12 };

let result = async {
  async_ops::assignable!(a);
  a ^= b;
  a.await
};

assert_eq!(42, block_on(result));
Div

Async implements Div<Rhs> where Rhs: Future when the wrapped Future::Output type implements Div<Rhs::Output>. The resulting type of the division is Async<impl Future<Output = <Future::Output as Div<Rhs::Output>>::Output>>.

use futures_executor::block_on;

let a = async { 84 };
let b = async { 2 };

let result = async { (async_ops::on(a) / b).await };

assert_eq!(42, block_on(result));
DivAssign

Async implements DivAssign<Rhs> where Rhs: Future when the wrapped Future type implements Assignable<<Async<Future> as Div<Rhs>>::Output>, which in turn requires the Future::Output type to implement Div<Rhs::Output>.

use futures_executor::block_on;

let a = async { 84 };
let b = async { 2 };

let result = async {
  async_ops::assignable!(a);
  a /= b;
  a.await
};

assert_eq!(42, block_on(result));
Mul

Async implements Mul<Rhs> where Rhs: Future when the wrapped Future::Output type implements Mul<Rhs::Output>. The resulting type of the multiplication is Async<impl Future<Output = <Future::Output as Mul<Rhs::Output>>::Output>>.

use futures_executor::block_on;

let a = async { 21 };
let b = async { 2 };

let result = async { (async_ops::on(a) * b).await };

assert_eq!(42, block_on(result));
MulAssign

Async implements MulAssign<Rhs> where Rhs: Future when the wrapped Future type implements Assignable<<Async<Future> as Mul<Rhs>>::Output>, which in turn requires the Future::Output type to implement Mul<Rhs::Output>.

use futures_executor::block_on;

let a = async { 21 };
let b = async { 2 };

let result = async {
  async_ops::assignable!(a);
  a *= b;
  a.await
};

assert_eq!(42, block_on(result));
Neg

Async implements Neg when the wrapped Future::Output type implements Neg. The resulting type of the negation is Async<impl Future<Output = <Future::Output as Neg>::Output>>.

use futures_executor::block_on;

let a = async { -42 };

let result = async { (-async_ops::on(a)).await };

assert_eq!(42, block_on(result));
Not

Async implements Not when the wrapped Future::Output type implements Not. The resulting type of the logical negation is Async<impl Future<Output = <Future::Output as Not>::Output>>.

use futures_executor::block_on;

let a = async { 213_u8 };

let result = async { (!async_ops::on(a)).await };

assert_eq!(42, block_on(result));
Rem

Async implements Rem<Rhs> where Rhs: Future when the wrapped Future::Output type implements Rem<Rhs::Output>. The resulting type of the reminder operation is Async<impl Future<Output = <Future::Output as Rem<Rhs::Output>>::Output>>.

use futures_executor::block_on;

let a = async { 42 };
let b = async { 5 };

let result = async { (async_ops::on(a) % b).await };

assert_eq!(2, block_on(result));
RemAssign

Async implements RemAssign<Rhs> where Rhs: Future when the wrapped Future type implements Assignable<<Async<Future> as Rem<Rhs>>::Output>, which in turn requires the Future::Output type to implement Rem<Rhs::Output>.

use futures_executor::block_on;

let a = async { 42 };
let b = async { 5 };

let result = async {
  async_ops::assignable!(a);
  a %= b;
  a.await
};

assert_eq!(2, block_on(result));
Shl

Async implements Shl<Rhs> where Rhs: Future when the wrapped Future::Output type implements Shl<Rhs::Output>. The resulting type of the left shift is Async<impl Future<Output = <Future::Output as Shl<Rhs::Output>>::Output>>.

use futures_executor::block_on;

let a = async { 21 };
let b = async { 1 };

let result = async { (async_ops::on(a) << b).await };

assert_eq!(42, block_on(result));
ShlAssign

Async implements ShlAssign<Rhs> where Rhs: Future when the wrapped Future type implements Assignable<<Async<Future> as Shl<Rhs>>::Output>, which in turn requires the Future::Output type to implement Shl<Rhs::Output>.

use futures_executor::block_on;

let a = async { 21 };
let b = async { 1 };

let result = async {
  async_ops::assignable!(a);
  a <<= b;
  a.await
};

assert_eq!(42, block_on(result));
Shr

Async implements Shr<Rhs> where Rhs: Future when the wrapped Future::Output type implements Shr<Rhs::Output>. The resulting type of the right shift is Async<impl Future<Output = <Future::Output as Shr<Rhs::Output>>::Output>>.

use futures_executor::block_on;

let a = async { 168 };
let b = async { 2 };

let result = async { (async_ops::on(a) >> b).await };

assert_eq!(42, block_on(result));
ShrAssign

Async implements ShrAssign<Rhs> where Rhs: Future when the wrapped Future type implements Assignable<<Async<Future> as Shr<Rhs>>::Output>, which in turn requires the Future::Output type to implement Shr<Rhs::Output>.

use futures_executor::block_on;

let a = async { 168 };
let b = async { 2 };

let result = async {
  async_ops::assignable!(a);
  a >>= b;
  a.await
};

assert_eq!(42, block_on(result));
Sub

Async implements Sub<Rhs> where Rhs: Future when the wrapped Future::Output type implements Sub<Rhs::Output>. The resulting type of the subtraction is Async<impl Future<Output = <Future::Output as Sub<Rhs::Output>>::Output>>.

use futures_executor::block_on;

let a = async { 44 };
let b = async { 2 };

let result = async { (async_ops::on(a) - b).await };

assert_eq!(42, block_on(result));
SubAssign

Async implements SubAssign<Rhs> where Rhs: Future when the wrapped Future type implements Assignable<<Async<Future> as Sub<Rhs>>::Output>, which in turn requires the Future::Output type to implement Sub<Rhs::Output>.

use futures_executor::block_on;

let a = async { 44 };
let b = async { 2 };

let result = async {
  async_ops::assignable!(a);
  a -= b;
  a.await
};

assert_eq!(42, block_on(result));

License

Licensed under either of

at your option.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache License Version 2.0, shall be dual licensed as above, without any additional terms or conditions.

Commit count: 38

cargo fmt