Crates.io | az_analyze_image |
lib.rs | az_analyze_image |
version | 0.1.2 |
source | src |
created_at | 2024-11-08 12:17:14.732481 |
updated_at | 2024-11-10 08:14:16.293294 |
description | Client library for Azure AI Services Analyze Image (Image Analysis) APIs |
homepage | |
repository | https://github.com/OTheDev/az_analyze_image |
max_upload_size | |
id | 1441114 |
size | 2,422,726 |
Rust client library for Azure AI Services Analyze Image (Image Analysis) REST
APIs, versions
3.2
and
4.0 (2023-04-01-preview
).
2023-04-01-preview
)This project is dual-licensed under either the Apache License, Version 2.0 or the MIT License, at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you shall be dual-licensed as above, without any additional terms or conditions.
In the detect people example, the Analyze Image API is used to detect people in an image.
For each detected person, the API returns a bounding box (defines a rectangle in the image) and a confidence level.
This example draws the bounding boxes on the image for detected persons with
confidence greater than 0.75 and saves it to out.jpg
:
use az_analyze_image::v40::client::{AnalyzeImageOptions, Client};
use az_analyze_image::v40::{DetectedPerson, VisualFeature};
use image::{load_from_memory_with_format, ImageFormat, Rgb, RgbImage};
use imageproc::drawing::draw_hollow_rect_mut;
use imageproc::rect::Rect;
use reqwest::Client as ReqwestClient;
use std::env::var;
use std::error::Error;
const IMAGE_URL: &str =
"https://images.pexels.com/photos/1367269/pexels-photo-1367269.jpeg";
// Pixel thickness for rectangle boundaries.
const THICKNESS: u32 = 8;
// Colors for each rectangle boundary. If there's more people than COLORS.len(),
// then we wrap around.
const COLORS: &[Rgb<u8>] =
&[Rgb([1, 255, 79]), Rgb([0, 237, 245]), Rgb([118, 232, 181])];
#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
let client: Client = get_client();
// Call the Analyze Image API with the people detection feature enabled
let people: Vec<DetectedPerson> = detect_people(&client, IMAGE_URL).await?;
// Download and Load the image
let img_bytes: Vec<u8> = download_image(IMAGE_URL).await?;
let mut img: RgbImage =
load_from_memory_with_format(&img_bytes, ImageFormat::Jpeg)?.to_rgb8();
// Draw bounding boxes around detected persons with confidence > 0.75
draw_bounding_boxes(&mut img, &people, COLORS, THICKNESS);
img.save("out.jpg")?;
Ok(())
}
fn get_client() -> Client {
let key = var("CV_KEY").expect("no CV_KEY");
let endpoint = var("CV_ENDPOINT").expect("no CV_ENDPOINT");
Client::new(key, &endpoint).unwrap()
}
async fn detect_people(
client: &Client,
url: &str,
) -> Result<Vec<DetectedPerson>, Box<dyn Error>> {
let features = vec![VisualFeature::People];
let options = AnalyzeImageOptions {
features: Some(&features),
..Default::default()
};
let analysis = client.analyze_image_url(url, options).await?;
Ok(analysis.people_result.unwrap().values)
}
async fn download_image(url: &str) -> Result<Vec<u8>, Box<dyn Error>> {
let client = ReqwestClient::new();
let response = client.get(url).send().await?.bytes().await?;
Ok(response.to_vec())
}
fn draw_bounding_boxes(
img: &mut RgbImage,
people: &[DetectedPerson],
colors: &[Rgb<u8>],
thickness: u32,
) {
for (i, person) in people.iter().enumerate() {
if person.confidence <= 0.75 {
continue;
}
let bounding_box = Rect::at(
person.bounding_box.x as i32,
person.bounding_box.y as i32,
)
.of_size(person.bounding_box.w, person.bounding_box.h);
let color = colors[i % colors.len()];
draw_thick_rect(img, bounding_box, color, thickness);
}
}
fn draw_thick_rect(
img: &mut RgbImage,
rect: Rect,
color: Rgb<u8>,
thickness: u32,
) {
for i in 0..thickness {
let new_rect = Rect::at(rect.left() - i as i32, rect.top() - i as i32)
.of_size(rect.width() + i * 2, rect.height() + i * 2);
draw_hollow_rect_mut(img, new_rect, color);
}
}