| Crates.io | bitpiece |
| lib.rs | bitpiece |
| version | 2.5.0 |
| created_at | 2024-07-13 22:10:11.494746+00 |
| updated_at | 2026-01-18 23:40:34.785342+00 |
| description | bitfields for rust |
| homepage | |
| repository | https://github.com/roeeshoshani/bitpiece |
| max_upload_size | |
| id | 1302635 |
| size | 226,913 |
A powerful Rust crate for working with bitfields. Define compact, type-safe bitfield structures with automatic bit packing and extraction.
const contextsno_std compatible: Works in embedded and bare-metal environmentsSB*) and unsigned (B*) arbitrary-width typesuse bitpiece::*;
// Define a 2-bit enum
#[bitpiece(2, all)]
#[derive(Debug, PartialEq, Eq)]
enum Priority {
Low = 0,
Medium = 1,
High = 2,
Critical = 3,
}
// Define an 8-bit struct containing multiple fields
#[bitpiece(8, all)]
#[derive(Debug, PartialEq, Eq)]
struct StatusByte {
enabled: bool, // 1 bit
priority: Priority, // 2 bits
count: B5, // 5 bits (unsigned, 0-31)
}
fn main() {
// Create from raw bits
let status = StatusByte::from_bits(0b10101_01_1);
assert_eq!(status.enabled(), true);
assert_eq!(status.priority(), Priority::Medium);
assert_eq!(status.count(), B5::new(21));
// Modify fields
let updated = status
.with_priority(Priority::Critical)
.with_count(B5::new(7));
assert_eq!(updated.to_bits(), 0b00111_11_1);
}
#[bitpiece] Attribute#[bitpiece] AttributeThe #[bitpiece] attribute macro is the main entry point for defining bitfield types. It can be applied to structs and enums.
#[bitpiece] // Auto-calculate bit length, basic features
#[bitpiece(all)] // Auto-calculate bit length, all features
#[bitpiece(32)] // Explicit 32-bit length, basic features
#[bitpiece(32, all)] // Explicit 32-bit length, all features
#[bitpiece(get, set)] // Auto-calculate, specific features only
#[bitpiece(16, get, set, with)] // Explicit length with specific features
Bit length (optional): An integer specifying the exact bit length. If omitted, the bit length is calculated automatically from the fields (for structs) or variant values (for enums).
Feature flags (optional): Control which methods and types are generated. See Opt-in Features for details.
B1 - B64)Types for unsigned integers of specific bit widths:
use bitpiece::*;
let three_bits: B3 = B3::new(0b101); // 3-bit value (0-7)
let five_bits: B5 = B5::new(31); // 5-bit value (0-31)
assert_eq!(three_bits.get(), 5);
assert_eq!(B3::MAX.get(), 7);
// Validation
assert!(B3::try_new(7).is_some()); // Valid: fits in 3 bits
assert!(B3::try_new(8).is_none()); // Invalid: requires 4 bits
SB1 - SB64)Types for signed integers of specific bit widths using two's complement:
use bitpiece::*;
let signed: SB5 = SB5::new(-10); // 5-bit signed value (-16 to 15)
assert_eq!(signed.get(), -10);
assert_eq!(SB5::MIN.get(), -16);
assert_eq!(SB5::MAX.get(), 15);
// Validation
assert!(SB3::try_new(3).is_some()); // Valid: fits in 3 bits
assert!(SB3::try_new(-4).is_some()); // Valid: minimum for SB3
assert!(SB3::try_new(4).is_none()); // Invalid: too large
assert!(SB3::try_new(-5).is_none()); // Invalid: too small
All standard Rust integer types implement BitPiece:
u8, u16, u32, u64i8, i16, i32, i64use bitpiece::*;
#[bitpiece(48, all)]
struct MixedTypes {
byte: u8, // 8 bits
word: u16, // 16 bits
flags: B8, // 8 bits
signed: i16, // 16 bits
}
bool is a 1-bit type:
use bitpiece::*;
#[bitpiece(3, all)]
struct Flags {
read: bool, // 1 bit
write: bool, // 1 bit
execute: bool, // 1 bit
}
Structs are the primary way to define composite bitfields. Fields are packed in order from least significant bit (LSB) to most significant bit (MSB).
use bitpiece::*;
#[bitpiece(16, all)]
#[derive(Debug, PartialEq, Eq)]
struct Instruction {
opcode: B4, // Bits 0-3 (LSB)
reg_a: B3, // Bits 4-6
reg_b: B3, // Bits 7-9
immediate: B6, // Bits 10-15 (MSB)
}
// Bit layout:
// [immediate: 6 bits][reg_b: 3 bits][reg_a: 3 bits][opcode: 4 bits]
// MSB LSB
Fields are packed starting from bit 0:
#[bitpiece(8, all)]
struct Example {
a: B2, // Bits 0-1
b: B3, // Bits 2-4
c: B3, // Bits 5-7
}
let val = Example::from_bits(0b111_010_01);
assert_eq!(val.a(), B2::new(0b01));
assert_eq!(val.b(), B3::new(0b010));
assert_eq!(val.c(), B3::new(0b111));
Enums can be used as bitfield types. The bit width is automatically calculated from the variant values, or can be specified explicitly.
When all possible bit patterns map to valid variants:
use bitpiece::*;
#[bitpiece(2, all)] // 2 bits = 4 possible values
#[derive(Debug, PartialEq, Eq)]
enum Direction {
North = 0,
East = 1,
South = 2,
West = 3,
}
// All 2-bit values (0-3) are valid
let dir = Direction::from_bits(2);
assert_eq!(dir, Direction::South);
When not all bit patterns are valid variants:
use bitpiece::*;
#[bitpiece(all)] // Auto-calculated: 7 bits needed for value 100
#[derive(Debug, PartialEq, Eq)]
enum ErrorCode {
Success = 0,
NotFound = 10,
PermissionDenied = 50,
InternalError = 100,
}
// Valid variant
assert_eq!(ErrorCode::from_bits(10), ErrorCode::NotFound);
// Invalid bit pattern panics in from_bits
// Use try_from_bits for safe conversion
assert!(ErrorCode::try_from_bits(25).is_none());
assert!(ErrorCode::try_from_bits(50).is_some());
You can specify a larger bit length than required:
use bitpiece::*;
#[bitpiece(16, all)] // Use 16 bits even though values fit in fewer
#[derive(Debug, PartialEq, Eq)]
enum Command {
Nop = 0,
Load = 1,
Store = 2,
}
// Can accept 16-bit values
assert!(Command::try_from_bits(1000).is_none());
When you apply #[bitpiece] to a struct, several methods and types are generated.
#[bitpiece(16, all)]
struct MyStruct { /* ... */ }
// Generated constants:
const MY_STRUCT_BIT_LEN: usize = 16;
type MyStructStorageTy = u16; // Smallest type that fits
For each field, offset and length constants are generated:
#[bitpiece(8, all)]
struct Example {
a: B3,
b: B5,
}
// Generated:
// Example::A_OFFSET = 0
// Example::A_LEN = 3
// Example::B_OFFSET = 3
// Example::B_LEN = 5
impl MyStruct {
// Create from raw bits (panics if invalid for non-exhaustive types)
pub const fn from_bits(bits: StorageTy) -> Self;
// Try to create from raw bits (returns None if invalid)
pub const fn try_from_bits(bits: StorageTy) -> Option<Self>;
// Convert to raw bits
pub const fn to_bits(self) -> StorageTy;
}
impl BitPiece for MyStruct {
const BITS: usize; // Total bit length
const ZEROES: Self; // All bits set to 0 (for structs: each field's ZEROES)
const ONES: Self; // All bits set to 1 (for structs: each field's ONES)
const MIN: Self; // The minimum value (for structs: each field's MIN)
const MAX: Self; // The maximum value (for structs: each field's MAX)
}
Important distinction between ONES/ZEROES and MAX/MIN:
ZEROES: All bits are 0. For unsigned types, this equals MIN. For signed types, this is 0 (not the minimum).ONES: All bits are 1. For unsigned types, this equals MAX. For signed types like i8, this represents -1 (not the maximum).MIN: The minimum representable value. For i8, this is -128.MAX: The maximum representable value. For i8, this is 127.use bitpiece::*;
// For unsigned types: ZEROES == MIN, ONES == MAX
assert_eq!(B8::ZEROES.get(), 0);
assert_eq!(B8::ONES.get(), 255);
assert_eq!(B8::MIN.get(), 0);
assert_eq!(B8::MAX.get(), 255);
// For signed types: ONES != MAX, ZEROES != MIN
assert_eq!(SB8::ZEROES.get(), 0); // All bits 0 = 0
assert_eq!(SB8::ONES.get(), -1); // All bits 1 = -1 in two's complement
assert_eq!(SB8::MIN.get(), -128); // Minimum value
assert_eq!(SB8::MAX.get(), 127); // Maximum value
Non-exhaustive enums: For enums where not all bit patterns are valid variants, ZEROES and ONES represent the closest valid variant to the all-zeros or all-ones bit pattern (i.e., MIN and MAX respectively). If an enum has no variant with value 0, ZEROES will be the variant with the smallest value, not a value with all bits set to zero.
#[bitpiece(all)]
#[derive(Debug, PartialEq, Eq)]
enum Sparse {
A = 10,
B = 50,
C = 100,
}
// No variant has value 0, so ZEROES is the minimum variant
assert_eq!(Sparse::ZEROES, Sparse::A); // Value 10, not 0
assert_eq!(Sparse::MIN, Sparse::A);
assert_eq!(Sparse::ONES, Sparse::C); // Maximum variant
assert_eq!(Sparse::MAX, Sparse::C);
Control which methods and types are generated using feature flags.
| Flag | Description |
|---|---|
get |
Field getter methods: field_name() |
set |
Field setter methods: set_field_name(value) |
with |
Builder-style methods: with_field_name(value) |
get_noshift |
Raw bit access: field_name_noshift() |
get_mut |
Mutable field references: field_name_mut() |
const_eq |
Const equality comparison |
fields_struct |
Generate TypeNameFields struct |
mut_struct |
Generate TypeNameMutRef type |
mut_struct_field_get |
Getter methods on MutRef |
mut_struct_field_set |
Setter methods on MutRef |
mut_struct_field_get_noshift |
Noshift getters on MutRef |
mut_struct_field_mut |
Nested mutable references on MutRef |
| Preset | Includes |
|---|---|
basic |
get, set, with (default if no flags specified) |
all |
All features |
mut_struct_all |
All mut_struct* features |
// Only getters
#[bitpiece(8, get)]
struct ReadOnly { /* ... */ }
// Getters and setters, no builder pattern
#[bitpiece(8, get, set)]
struct Mutable { /* ... */ }
// Everything
#[bitpiece(8, all)]
struct Full { /* ... */ }
// Custom combination
#[bitpiece(8, get, with, fields_struct)]
struct Custom { /* ... */ }
When you apply #[bitpiece] to a type, any attributes you place on the type (such as #[derive(...)]) are applied to both the main generated type and the generated fields struct (if fields_struct is enabled).
The Clone and Copy traits are automatically derived on all bitpiece types. You do not need to (and should not) manually derive these traits:
use bitpiece::*;
// Clone and Copy are automatically derived - don't include them!
#[bitpiece(8, all)]
#[derive(Debug, PartialEq, Eq)] // No Clone, Copy needed
struct MyStruct {
a: B4,
b: B4,
}
// Same for enums
#[bitpiece(2, all)]
#[derive(Debug, PartialEq, Eq)] // No Clone, Copy needed
enum MyEnum {
A = 0,
B = 1,
C = 2,
D = 3,
}
This automatic derivation ensures that all bitpiece types satisfy the Copy bound required by the BitPiece trait.
You can derive additional traits like Debug, PartialEq, Eq, Hash, or even third-party traits like serde::Serialize and serde::Deserialize:
use bitpiece::*;
#[bitpiece(16, all)]
#[derive(Debug, PartialEq, Eq, Hash)]
struct Packet {
version: B4,
flags: B4,
length: u8,
}
// With serde (requires serde feature/dependency)
// #[bitpiece(8, all)]
// #[derive(Debug, serde::Serialize, serde::Deserialize)]
// struct Config {
// mode: B4,
// level: B4,
// }
These attributes are applied to both the main Packet type and the PacketFields struct, allowing you to serialize/deserialize both types consistently.
#[bitpiece(8, all)]
struct Packet {
version: B2,
flags: B3,
length: B3,
}
let packet = Packet::from_bits(0b101_110_01);
// Get individual fields
let version = packet.version(); // B2
let flags = packet.flags(); // B3
let length = packet.length(); // B3
assert_eq!(version.get(), 1);
assert_eq!(flags.get(), 6);
assert_eq!(length.get(), 5);
The with_* methods return a new instance with the field modified:
let packet = Packet::ZEROES;
// Chain modifications
let updated = packet
.with_version(B2::new(2))
.with_flags(B3::new(7))
.with_length(B3::new(4));
// Original unchanged
assert_eq!(packet.to_bits(), 0);
The set_* methods modify the instance in place:
let mut packet = Packet::ZEROES;
packet.set_version(B2::new(2));
packet.set_flags(B3::new(7));
packet.set_length(B3::new(4));
Get field bits at their original position without shifting:
#[bitpiece(8, all)]
struct Example {
a: B3, // Bits 0-2
b: B5, // Bits 3-7
}
let val = Example::from_bits(0b11111_010);
// Normal getter: shifts to bit 0
assert_eq!(val.b().get(), 0b11111);
// Noshift: keeps original position
assert_eq!(val.b_noshift(), 0b11111_000);
Get a mutable reference to a field within the bitfield:
#[bitpiece(8, all)]
struct Container {
inner: B4,
outer: B4,
}
let mut container = Container::ZEROES;
{
let mut inner_ref = container.inner_mut();
inner_ref.set(B4::new(15));
}
assert_eq!(container.inner().get(), 15);
Bitfield types can be nested within other bitfields:
use bitpiece::*;
#[bitpiece(4, all)]
#[derive(Debug, PartialEq, Eq)]
struct Inner {
x: B2,
y: B2,
}
#[bitpiece(12, all)]
#[derive(Debug, PartialEq, Eq)]
struct Outer {
a: Inner, // 4 bits
b: Inner, // 4 bits
c: B4, // 4 bits
}
let outer = Outer::from_bits(0b1010_0110_0011);
// Access nested fields
assert_eq!(outer.a().x(), B2::new(3));
assert_eq!(outer.a().y(), B2::new(0));
assert_eq!(outer.b().x(), B2::new(2));
assert_eq!(outer.b().y(), B2::new(1));
assert_eq!(outer.c(), B4::new(10));
#[bitpiece(8, all)]
struct Level1 {
data: B4,
flags: B4,
}
#[bitpiece(16, all)]
struct Level2 {
l1_a: Level1,
l1_b: Level1,
}
#[bitpiece(32, all)]
struct Level3 {
l2: Level2,
extra: u16,
}
let l3 = Level3::from_bits(0x12345678);
let nested_data = l3.l2().l1_a().data();
#[bitpiece(24, all)]
struct SignedExample {
small: i8, // 8-bit signed
large: i16, // 16-bit signed
}
let val = SignedExample::from_fields(SignedExampleFields {
small: -50,
large: -1000,
});
assert_eq!(val.small(), -50i8);
assert_eq!(val.large(), -1000i16);
#[bitpiece(16, all)]
struct CustomSigned {
a: SB5, // 5-bit signed (-16 to 15)
b: bool,
c: SB7, // 7-bit signed (-64 to 63)
d: B3,
}
let val = CustomSigned::from_bits(0b101_0101010_1_11111);
assert_eq!(val.a(), SB5::new(-1));
assert_eq!(val.b(), true);
assert_eq!(val.c(), SB7::new(42));
assert_eq!(val.d(), B3::new(5));
All operations work in const contexts:
use bitpiece::*;
#[bitpiece(8, all)]
struct Config {
mode: B2,
speed: B3,
enabled: bool,
reserved: B2,
}
// Const construction
const DEFAULT_CONFIG: Config = Config::from_bits(0b00_1_101_01);
// Const field access
const DEFAULT_MODE: B2 = DEFAULT_CONFIG.mode();
const DEFAULT_SPEED: B3 = DEFAULT_CONFIG.speed();
const IS_ENABLED: bool = DEFAULT_CONFIG.enabled();
// Const modification
const DISABLED_CONFIG: Config = DEFAULT_CONFIG.with_enabled(false);
// Const assertions
const _: () = assert!(DEFAULT_MODE.get() == 1);
const _: () = assert!(DEFAULT_SPEED.get() == 5);
const _: () = assert!(IS_ENABLED == true);
const fn create_packet(version: u8, flags: u8) -> Packet {
Packet::ZEROES
.with_version(B2::new(version))
.with_flags(B3::new(flags))
}
const PACKET: Packet = create_packet(2, 5);
All bitfield types implement the BitPiece trait:
pub trait BitPiece: Copy {
/// The length in bits of this type
const BITS: usize;
/// A value with all bits set to 0 (see note below for enums)
const ZEROES: Self;
/// A value with all bits set to 1 (see note below for enums)
const ONES: Self;
/// The minimum representable value
const MIN: Self;
/// The maximum representable value
const MAX: Self;
/// The storage type used internally
type Bits: BitStorage;
/// Try to create from raw bits
fn try_from_bits(bits: Self::Bits) -> Option<Self>;
/// Create from raw bits (may panic)
fn from_bits(bits: Self::Bits) -> Self;
/// Convert to raw bits
fn to_bits(self) -> Self::Bits;
}
use bitpiece::*;
fn print_bitpiece_info<T: BitPiece + core::fmt::Debug>(value: T) {
println!("Bits: {}", T::BITS);
println!("Value: {:?}", value);
println!("Raw: {:?}", value.to_bits());
}
try_from_bitsuse bitpiece::*;
#[bitpiece(all)]
#[derive(Debug, PartialEq, Eq)]
enum Status {
Ok = 0,
Error = 1,
Pending = 2,
}
// Safe conversion
match Status::try_from_bits(1) {
Some(status) => println!("Status: {:?}", status),
None => println!("Invalid status code"),
}
// For exhaustive enums, try_from_bits still validates range
assert!(Status::try_from_bits(3).is_none());
// B types validate that value fits in bit width
assert!(B4::try_new(15).is_some()); // Max for 4 bits
assert!(B4::try_new(16).is_none()); // Too large
// SB types validate signed range
assert!(SB4::try_new(7).is_some()); // Max for 4-bit signed
assert!(SB4::try_new(-8).is_some()); // Min for 4-bit signed
assert!(SB4::try_new(8).is_none()); // Too large
assert!(SB4::try_new(-9).is_none()); // Too small
The new and from_bits methods panic on invalid input:
// These will panic:
// let _ = B3::new(8); // Value doesn't fit
// let _ = Status::from_bits(5); // Invalid variant
When fields_struct is enabled, a companion struct is generated for convenient construction:
#[bitpiece(8, all)]
#[derive(Debug, PartialEq, Eq)]
struct Packet {
version: B2,
flags: B3,
length: B3,
}
// Generated: PacketFields struct
let fields = PacketFields {
version: B2::new(1),
flags: B3::new(5),
length: B3::new(7),
};
let packet = Packet::from_fields(fields);
// Convert back to fields
let extracted: PacketFields = packet.to_fields();
assert_eq!(fields, extracted);
// From/Into implementations
let packet2: Packet = fields.into();
let fields2: PacketFields = packet2.into();
For nested bitfields, the fields struct uses the direct bitfield type (not its *Fields type):
#[bitpiece(4, all)]
struct Inner {
x: B2,
y: B2,
}
#[bitpiece(8, all)]
struct Outer {
a: Inner,
b: B4,
}
// OuterFields uses Inner directly for field 'a'
let fields = OuterFields {
a: Inner::from_bits(0b1001), // or use InnerFields and convert
b: B4::new(15),
};
let outer = Outer::from_fields(fields);
// You can also construct the inner type from its fields and convert:
let fields2 = OuterFields {
a: InnerFields {
x: B2::new(1),
y: B2::new(2),
}.into(), // Convert InnerFields to Inner
b: B4::new(15),
};
The crate automatically selects the smallest storage type that fits the bit length:
| Bit Length | Storage Type |
|---|---|
| 1-8 | u8 |
| 9-16 | u16 |
| 17-32 | u32 |
| 33-64 | u64 |
Access the storage directly:
#[bitpiece(12, all)]
struct Example {
a: B6,
b: B6,
}
let val = Example::from_bits(0xABC);
// Direct storage access
assert_eq!(val.storage, 0xABC);
// Storage type is u16 for 12 bits
let storage: u16 = val.storage;
MIT License - see LICENSE for details.