Crates.io | bleuscore |
lib.rs | bleuscore |
version | 0.1.3 |
source | src |
created_at | 2024-04-23 05:45:55.61763 |
updated_at | 2024-05-27 03:26:58.7345 |
description | A fast bleu score calculator |
homepage | |
repository | https://github.com/shenxiangzhuang/bleuscore |
max_upload_size | |
id | 1217198 |
size | 1,195,004 |
bleuscore
is a fast BLEU score calculator written in rust.
The python package has been published to pypi, so we can install it directly with many ways:
pip
pip install bleuscore
poetry
poetry add bleuscore
uv
uv pip install bleuscore
The usage is exactly same with huggingface evaluate:
- import evaluate
+ import bleuscore
predictions = ["hello there general kenobi", "foo bar foobar"]
references = [
["hello there general kenobi", "hello there !"],
["foo bar foobar"]
]
- bleu = evaluate.load("bleu")
- results = bleu.compute(predictions=predictions, references=references)
+ results = bleuscore.compute(predictions=predictions, references=references)
print(results)
# {'bleu': 1.0, 'precisions': [1.0, 1.0, 1.0, 1.0], 'brevity_penalty': 1.0,
# 'length_ratio': 1.1666666666666667, 'translation_length': 7, 'reference_length': 6}
TLDR: We got more than 10x speedup when the corpus size beyond 100K
We use the demo data shown in quick start to do this simple benchmark. You can check the benchmark/simple for the benchmark source code.
rs_bleuscore
: bleuscore python library
local_hf_bleu
: huggingface evaluate bleu algorithm in local
sacre_bleu
: sacrebleu
hf_evaluate
: huggingface evaluate bleu algorithm with evaluate package
The N
is used to enlarge the predictions/references size by simply duplication the demo data as shown before.
We can see that as N
increase, the bleuscore gets better performance.
You can navigate benchmark for more benchmark details.
hyhyperfine --warmup 5 --runs 10 \
"python simple/rs_bleuscore.py 100" \
"python simple/local_hf_bleu.py 100" \
"python simple/sacre_bleu.py 100" \
"python simple/hf_evaluate.py 100"
Benchmark 1: python simple/rs_bleuscore.py 100
Time (mean ± σ): 19.0 ms ± 2.6 ms [User: 17.8 ms, System: 5.3 ms]
Range (min … max): 14.8 ms … 23.2 ms 10 runs
Benchmark 2: python simple/local_hf_bleu.py 100
Time (mean ± σ): 21.5 ms ± 2.2 ms [User: 19.0 ms, System: 2.5 ms]
Range (min … max): 16.8 ms … 24.1 ms 10 runs
Benchmark 3: python simple/sacre_bleu.py 100
Time (mean ± σ): 45.9 ms ± 2.2 ms [User: 38.7 ms, System: 7.1 ms]
Range (min … max): 43.5 ms … 50.9 ms 10 runs
Benchmark 4: python simple/hf_evaluate.py 100
Time (mean ± σ): 4.504 s ± 0.429 s [User: 0.762 s, System: 0.823 s]
Range (min … max): 4.163 s … 5.446 s 10 runs
Summary
python simple/rs_bleuscore.py 100 ran
1.13 ± 0.20 times faster than python simple/local_hf_bleu.py 100
2.42 ± 0.35 times faster than python simple/sacre_bleu.py 100
237.68 ± 39.88 times faster than python simple/hf_evaluate.py 100
Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
---|---|---|---|---|
python simple/rs_bleuscore.py 1000 |
20.3 ± 1.3 | 18.2 | 21.4 | 1.00 |
python simple/local_hf_bleu.py 1000 |
45.8 ± 1.2 | 44.2 | 47.5 | 2.26 ± 0.16 |
python simple/rs_bleuscore.py 10000 |
37.8 ± 1.5 | 35.9 | 39.5 | 1.87 ± 0.14 |
python simple/local_hf_bleu.py 10000 |
295.0 ± 5.9 | 288.6 | 304.2 | 14.55 ± 0.98 |
python simple/rs_bleuscore.py 100000 |
219.6 ± 3.3 | 215.3 | 224.0 | 10.83 ± 0.72 |
python simple/local_hf_bleu.py 100000 |
2781.4 ± 42.2 | 2723.1 | 2833.0 | 137.13 ± 9.10 |
python simple/rs_bleuscore.py 1000000 |
2048.8 ± 31.4 | 2013.2 | 2090.3 | 101.01 ± 6.71 |
python simple/local_hf_bleu.py 1000000 |
28285.3 ± 100.9 | 28182.1 | 28396.1 | 1394.51 ± 90.21 |