Crates.io | bootupd |
lib.rs | bootupd |
version | 0.2.25 |
source | src |
created_at | 2020-09-15 20:30:11.579117 |
updated_at | 2024-11-19 11:14:30.92207 |
description | Bootloader updater |
homepage | |
repository | |
max_upload_size | |
id | 289215 |
size | 187,974 |
Today many Linux systems handle updates for bootloader data
in an inconsistent and ad-hoc way. For example, on
Fedora and Debian, a package manager update will update UEFI
binaries in /boot/efi
, but not the BIOS MBR data.
Transactional/"image" update systems like OSTree and dual-partition systems like the Container Linux update system are more consistent: they normally cover kernel/userspace but not anything related to bootloaders.
The reason for this is straightforward: performing bootloader
updates in an "A/B" fashion requires completely separate nontrivial
logic from managing the kernel and root filesystem. Today OSTree e.g.
makes the choice that it does not update /boot/efi
(and also doesn't
update the BIOS MBR).
The goal of this project is to be a cross-distribution, OS update system agnostic tool to manage updates for things like:
/boot/efi
This project originated in this Fedora CoreOS github issue.
The scope is otherwise limited; for example, bootupd will not
manage anything related to the kernel such as kernel arguments;
that's for tools like grubby
and ostree
.
bootupd supports updating GRUB and shim for UEFI firmware on
x86_64 and aarch64, and GRUB for BIOS firmware on x86_64.
The project is deployed in Fedora CoreOS and derivatives,
and is also used by the new bootc install
functionality. The bootupd CLI should be considered stable.
bootupd does not yet perform updates in a way that is safe against a power failure at the wrong moment, or against a buggy bootloader update that fails to boot the system.
Therefore, by default, bootupd updates the bootloader only when manually instructed to do so.
dbxtool manages updates
to the Secure Boot database - bootupd
will likely need to
perform any updates to the shimx64.efi
binary
before dbxtool.service
starts. But otherwise they are independent.
bootupd could be compared to fwupd which is
a project that exists today to update hardware device firmware - things not managed
by e.g. apt/zypper/yum/rpm-ostree update
today.
fwupd comes as a UEFI binary today, so bootupd could take care of updating fwupd
but today fwupd handles that itself. So it's likely that bootupd would only take
care of GRUB and shim. See discussion in this issue.
systemd bootctl can update itself; this project would probably just proxy that if we detect systemd-boot is in use.
One idea is that bootupd could help support redundant bootable disks.
For various reasons it doesn't really work to try to use RAID1 for an entire disk; the ESP must be handled
specially. bootupd
could learn how to synchronize multiple EFI system partitions from a primary.
A notable problem today for rpm-ostree based
systems is that rpm -q shim-x64
is misleading because it's not actually
updated in place.
Particularly this commit makes things clear - the data
from the RPM goes into /usr
(part of the OSTree), so it doesn't touch /boot/efi
.
But that commit didn't change how the RPM database works (and more generally it
would be technically complex for rpm-ostree to change how the RPM database works today).
What we ultimately want is that rpm -q shim-x64
returns "not installed" - because
it's not managed by RPM or by ostree. Instead one would purely use bootupctl
to manage it.
However, it might still be built as an RPM, just not installed that way. The RPM version numbers would be used
for the bootupd version associated with the payload, and ultimately we'd teach rpm-ostree compose tree
how to separately download bootloaders and pass them to bootupctl backend
.
A key advertised feature of ostree is that updates are truly transactional. There's even a a test case that validates forcibly pulling the power during OS updates. A simple way to look at this is that on an ostree-based system there is no need to have a "please don't power off your computer" screen. This in turn helps administrators to confidently enable automatic updates.
Doing that for the bootloader (i.e. bootupd's domain) is an entirely separate problem. There have been some ideas around how we could make the bootloaders use an A/B type scheme (or at least be more resilient), and perhaps in the future bootupd will use some of those.
These updates hence carry different levels of risk. In many cases actually it's OK if the bootloader lags behind; we don't need to update every time.
But out of conservatism currently today for e.g. Fedora CoreOS, bootupd is disabled by default. On the other hand, if your OS update mechanism isn't transactional, then you may want to enable bootupd by default.
It was never a daemon. The name was intended to be "bootloader-upDater" not "bootloader-updater-Daemon". The choice of a "d" suffix is in retrospect probably too confusing.
bootupd used to have an internally-facing bootupd.service
and
bootupd.socket
systemd units that acted as a locking mechanism. The service
would very quickly auto exit. There was nothing long-running, so it was not
really a daemon.
bootupd now uses systemd-run
instead to guarantee the following: