Crates.io | border-mlflow-tracking |
lib.rs | border-mlflow-tracking |
version | 0.0.7 |
source | src |
created_at | 2024-09-01 11:04:22.596828 |
updated_at | 2024-09-01 11:04:22.596828 |
description | Reinforcement learning library |
homepage | |
repository | https://github.com/laboroai/border |
max_upload_size | |
id | 1359500 |
size | 67,893 |
Support MLflow tracking to manage experiments.
Before running the program using this crate, run a tracking server with the following command:
mlflow server --host 127.0.0.1 --port 8080
Then, training configurations and metrices can be logged to the tracking server.
The following code provides an example. Nested configuration parameters will be flattened,
logged like hyper_params.param1
, hyper_params.param2
.
use anyhow::Result;
use border_core::record::{Record, RecordValue, Recorder};
use border_mlflow_tracking::MlflowTrackingClient;
use serde::Serialize;
// Nested Configuration struct
#[derive(Debug, Serialize)]
struct Config {
env_params: String,
hyper_params: HyperParameters,
}
#[derive(Debug, Serialize)]
struct HyperParameters {
param1: i64,
param2: Param2,
param3: Param3,
}
#[derive(Debug, Serialize)]
enum Param2 {
Variant1,
Variant2(f32),
}
#[derive(Debug, Serialize)]
struct Param3 {
dataset_name: String,
}
fn main() -> Result<()> {
env_logger::init();
let config1 = Config {
env_params: "env1".to_string(),
hyper_params: HyperParameters {
param1: 0,
param2: Param2::Variant1,
param3: Param3 {
dataset_name: "a".to_string(),
},
},
};
let config2 = Config {
env_params: "env2".to_string(),
hyper_params: HyperParameters {
param1: 0,
param2: Param2::Variant2(3.0),
param3: Param3 {
dataset_name: "a".to_string(),
},
},
};
// Set experiment for runs
let client = MlflowTrackingClient::new("http://localhost:8080").set_experiment_id("Default")?;
// Create recorders for logging
let mut recorder_run1 = client.create_recorder("")?;
let mut recorder_run2 = client.create_recorder("")?;
recorder_run1.log_params(&config1)?;
recorder_run2.log_params(&config2)?;
// Logging while training
for opt_steps in 0..100 {
let opt_steps = opt_steps as f32;
// Create a record
let mut record = Record::empty();
record.insert("opt_steps", RecordValue::Scalar(opt_steps));
record.insert("Loss", RecordValue::Scalar((-1f32 * opt_steps).exp()));
// Log metrices in the record
recorder_run1.write(record);
}
// Logging while training
for opt_steps in 0..100 {
let opt_steps = opt_steps as f32;
// Create a record
let mut record = Record::empty();
record.insert("opt_steps", RecordValue::Scalar(opt_steps));
record.insert("Loss", RecordValue::Scalar((-0.5f32 * opt_steps).exp()));
// Log metrices in the record
recorder_run2.write(record);
}
Ok(())
}