| Crates.io | burn-central-core |
| lib.rs | burn-central-core |
| version | 0.2.1 |
| created_at | 2025-12-04 15:11:17.888715+00 |
| updated_at | 2025-12-16 20:27:26.296771+00 |
| description | Burn Central Client. |
| homepage | |
| repository | https://github.com/tracel-ai/burn-central |
| max_upload_size | |
| id | 1966577 |
| size | 159,237 |
Burn Central is a new way of using Burn. It aims at providing a central platform for experiment tracking, model sharing, and deployment for all Burn users!
This repository contains the SDK associated with the project. It offers macros that help attach to your code and send training data to our application. To use this project you must first create an account on the application.
Also needed to use this is the new burn-cli.
Add Burn Central to your Cargo.toml:
[dependencies]
burn-central = "0.1.0"
Currently, we only support training. Here's how to integrate Burn Central into your training workflow:
Use the #[register] macro to register your training function:
use burn_central::{
experiment::ExperimentRun,
macros::register,
runtime::{Args, ArtifactLoader, Model, MultiDevice},
};
use burn::prelude::*;
#[register(training, name = "mnist")]
pub fn training<B: AutodiffBackend>(
client: &ExperimentRun,
config: Args<YourExperimentConfig>,
MultiDevice(devices): MultiDevice<B>,
loader: ArtifactLoader<ModelArtifact<B>>,
) -> Result<Model<impl ModelArtifact<B::InnerBackend>>, String> {
// Log your configuration
client.log_config("Training Config", &training_config)
.expect("Logging config failed");
// Your training logic here...
let model = train::<B>(client, artifact_dir, &training_config, devices[0].clone())?;
Ok(Model(ModelArtifact {
model_record: model.into_record(),
config: training_config,
}))
}
To enable experiment tracking, you need to add three key components to your LearnerBuilder:
use burn_central::{
log::RemoteExperimentLoggerInstaller,
metrics::RemoteMetricLogger,
record::RemoteCheckpointRecorder,
};
use burn::train::{LearnerBuilder, metric::{AccuracyMetric, LossMetric}};
let learner = LearnerBuilder::new(artifact_dir)
.metric_train_numeric(AccuracyMetric::new())
.metric_valid_numeric(AccuracyMetric::new())
.metric_train_numeric(LossMetric::new())
.metric_valid_numeric(LossMetric::new())
// Required: Remote metric logging
.with_metric_logger(RemoteMetricLogger::new(client))
// Required: Remote checkpoint saving
.with_file_checkpointer(RemoteCheckpointRecorder::new(client))
// Required: Remote application logging
.with_application_logger(Some(Box::new(
RemoteExperimentLoggerInstaller::new(client)
)))
.num_epochs(config.num_epochs)
.summary()
.build(
model.init::<B>(&device),
optimizer.init(),
learning_rate,
LearningStrategy::SingleDevice(device),
);
Once integrated, run your training using the burn-cli to automatically track metrics, checkpoints, and logs on Burn Central.
Contributions to this repository are welcome. You can also submit issues for features you would like to see in the near future.
Licensed under either of:
at your option.