bus_queue

Crates.iobus_queue
lib.rsbus_queue
version0.5.3
sourcesrc
created_at2018-12-17 15:02:47.123046
updated_at2020-05-10 13:39:15.653317
descriptionLock-free Bounded non-Blocking Pub-Sub Queue
homepage
repositoryhttps://github.com/filipdulic/bus-queue
max_upload_size
id102355
size203,938
Vladan Popovic (vladan)

documentation

README

Lock-free Bounded Non-Blocking Pub-Sub Queue

This is a publish subscribe pattern queue, where the publisher is never blocked by slow subscribers. The side effect is that slow subscribers will miss messages. The intended use-case are high throughput streams where receiving the latest message is prioritized over receiving the entire stream. Market Data Feeds, Live Streams, etc....

The underlying data-structure is a vector of Arc(s) eliminating the use of copies.

Features

  • Lock-Free Write/Read - Lock-Free for Publisher and Lock-Free for Subscribers.
  • Bounded - Constant size of memory used, max is sizeof(MsgObject)*(queue_size + sub_cnt + 1). This is an edge-case where each subscriber is holding a ref to an object while the publisher has published a full length of queue in the mean time.
  • Non-Blocking - The queue never blocks the publisher, slow subscribers miss data proportinal to their speed.
  • Pub-Sub - Every Subscriber that can keep up with the Publisher will recieve all the data the Publisher publishes.
  • channel - a raw Pub/Sub channel implementation without the thread synchronisation and futures logic.
  • bus - an async Pub/Sub queue with futures::sink::Sink and futures::stream::Stream traits.

bus::Publisher, and channel::Sender are used to broadcast data to bus::Subscriber, and channel::Receiver pools. Subscribers are clone-able such that many threads, or futures, can receive data simultaneously. The only limitation is that Subscribers have to keep up with the frequency of the Publisher. If a Subscriber is slow it will drop data.

Disconnection

The broadcast and receive operations on channels will all return a Result indicating whether the operation succeeded or not. An unsuccessful operation is normally indicative of the other half of a channel having "hung up" by being dropped in its corresponding thread.

Once half of a channel has been deallocated, most operations can no longer continue to make progress, so Err will be returned. Many applications will continue to unwrap the results returned from this module, instigating a propagation of failure among threads if one unexpectedly dies.

Examples

Simple bare usage

extern crate bus_queue;

use bus_queue::raw_bounded;

fn main() {
    let (tx, rx) = raw_bounded(10);
    (1..15).for_each(|x| tx.broadcast(x).unwrap());

    let received: Vec<i32> = rx.map(|x| *x).collect();
    // Test that only the last 10 elements are in the received list.
    let expected: Vec<i32> = (5..15).collect();

    assert_eq!(expected, received);
}

Simple async usage

use bus_queue::bounded;
use futures::executor::block_on;
use futures::stream;
use futures::StreamExt;

fn main() {
    let (publisher, subscriber1) = bounded(10);
    let subscriber2 = subscriber1.clone();

    block_on(async move {
        stream::iter(1..15)
            .map(|i| Ok(i))
            .forward(publisher)
            .await
            .unwrap();
    });

    let received1: Vec<u32> = block_on(async { subscriber1.map(|x| *x).collect().await });
    let received2: Vec<u32> = block_on(async { subscriber2.map(|x| *x).collect().await });
    // Test that only the last 10 elements are in the received list.
    let expected = (5..15).collect::<Vec<u32>>();
    assert_eq!(received1, expected);
    assert_eq!(received2, expected);
}
Commit count: 153

cargo fmt