butteraugli

Crates.iobutteraugli
lib.rsbutteraugli
version0.4.0
created_at2021-05-18 06:21:56.490827+00
updated_at2026-01-08 10:20:06.93765+00
descriptionPure Rust implementation of Google's butteraugli perceptual image quality metric from libjxl
homepagehttps://github.com/imazen/butteraugli
repositoryhttps://github.com/imazen/butteraugli
max_upload_size
id398859
size339,312
Lilith River (lilith)

documentation

https://docs.rs/butteraugli

README

butteraugli

Crates.io Documentation CI codecov License

Pure Rust implementation of Google's butteraugli perceptual image quality metric from libjxl.

What is Butteraugli?

Butteraugli is a psychovisual image quality metric that estimates the perceived difference between two images. Unlike simple metrics like PSNR or MSE, butteraugli models human vision to produce scores that correlate well with subjective quality assessments.

The metric is based on:

  • Opsin dynamics: Models photosensitive chemical responses in the retina
  • XYB color space: A hybrid opponent/trichromatic color representation
  • Visual masking: How image features hide or reveal differences
  • Multi-scale analysis: Examines differences at multiple frequency bands

Quality Thresholds

Score Interpretation
< 1.0 Images appear identical to most viewers
1.0 - 2.0 Subtle differences may be noticeable
> 2.0 Visible differences between images

Command-Line Tool

Install with:

cargo install butteraugli --features cli

Basic Usage

# Compare two images
butteraugli original.png compressed.jpg
# Output: Butteraugli score: 1.2345

# Show quality rating
butteraugli -q original.png compressed.jpg
# Output: Butteraugli score: 1.2345 (acceptable)
#         Quality: Noticeable but acceptable

# JSON output for scripting
butteraugli --json original.png compressed.jpg

# Save difference heatmap
butteraugli --diffmap diff.png original.png compressed.jpg

# Just the score (for scripting)
butteraugli --quiet original.png compressed.jpg
# Output: 1.234500

Advanced Options

# Custom intensity target (default: 80 nits)
butteraugli --intensity-target 250 hdr_orig.png hdr_comp.png

# High-frequency asymmetry (penalize blur vs ringing)
butteraugli --hf-asymmetry 1.5 original.png compressed.jpg

# See all options
butteraugli --help

Library Usage

Add to your Cargo.toml:

[dependencies]
butteraugli = "0.4"

Input Formats

Two input APIs are provided using the imgref and rgb crates:

Function Input Type Color Space Use Case
butteraugli ImgRef<RGB8> sRGB (gamma-encoded) Standard 8-bit images
butteraugli_linear ImgRef<RGB<f32>> Linear RGB (0.0-1.0) HDR, 16-bit, float pipelines

Both APIs:

  • Support stride for images with padding via ImgRef::new_stride()
  • Require minimum size: 8×8 pixels
  • Return ButteraugliResult with score and optional diffmap

Basic Example

use butteraugli::{butteraugli, ButteraugliParams, Img, RGB8};

// Create two images (Vec<RGB8> or any container)
let width = 640;
let height = 480;

let original: Vec<RGB8> = load_image_pixels(); // Your image loader
let compressed: Vec<RGB8> = load_compressed_pixels();

let img1 = Img::new(original, width, height);
let img2 = Img::new(compressed, width, height);

// Compare images
let params = ButteraugliParams::default();
let result = butteraugli(img1.as_ref(), img2.as_ref(), &params)
    .expect("valid image data");

println!("Butteraugli score: {:.4}", result.score);

if result.score < 1.0 {
    println!("Images appear identical!");
} else if result.score < 2.0 {
    println!("Minor visible differences");
} else {
    println!("Significant visible differences");
}

With Difference Map

use butteraugli::{butteraugli, ButteraugliParams, Img, RGB8};

let params = ButteraugliParams::default()
    .with_compute_diffmap(true);  // Enable per-pixel difference map

let result = butteraugli(img1.as_ref(), img2.as_ref(), &params)?;

// Access per-pixel difference map (ImgVec<f32>)
if let Some(diffmap) = result.diffmap {
    let max_diff = diffmap.buf().iter().fold(0.0f32, |a, &b| a.max(b));
    println!("Maximum local difference: {:.4}", max_diff);
}

Linear RGB Example (HDR/16-bit)

use butteraugli::{butteraugli_linear, ButteraugliParams, Img, RGB, srgb_to_linear};

// Convert 16-bit image to linear f32
let original_16bit: &[u16] = &[/* 16-bit RGB data */];
let original_linear: Vec<RGB<f32>> = original_16bit.chunks(3)
    .map(|c| RGB::new(c[0] as f32 / 65535.0, c[1] as f32 / 65535.0, c[2] as f32 / 65535.0))
    .collect();

// Or convert 8-bit sRGB manually
let original_srgb: &[u8] = &[/* sRGB data */];
let original_linear: Vec<RGB<f32>> = original_srgb.chunks(3)
    .map(|c| RGB::new(srgb_to_linear(c[0]), srgb_to_linear(c[1]), srgb_to_linear(c[2])))
    .collect();

let img = Img::new(original_linear, width, height);
let result = butteraugli_linear(img.as_ref(), compressed_img.as_ref(), &ButteraugliParams::default())?;

Images with Stride (Padding)

use butteraugli::{butteraugli, ButteraugliParams, Img, RGB8};

// Image data with padding (stride > width)
let raw_pixels: &[RGB8] = get_padded_buffer();
let width = 640;
let height = 480;
let stride = 704;  // Actual row length including padding

// Create ImgRef with stride
let img = Img::new_stride(raw_pixels, width, height, stride);

Custom Parameters

use butteraugli::ButteraugliParams;

let params = ButteraugliParams::new()
    .with_hf_asymmetry(1.5)        // Penalize new artifacts more than blurring
    .with_xmul(1.0)                // X channel multiplier (1.0 = neutral)
    .with_intensity_target(250.0)  // HDR display brightness in nits
    .with_compute_diffmap(true);   // Generate per-pixel difference map

Score Interpretation

// Interpret the score directly
if result.score < 1.0 {
    println!("Imperceptible difference");
} else if result.score < 2.0 {
    println!("Subtle difference");
} else {
    println!("Visible difference");
}

// Or convert to other scales:
// Quality percentage (0-100): (100.0 - score * 25.0).clamp(0.0, 100.0)
// Fuzzy class (0-2, from C++): (2.0 - score * 0.5).clamp(0.0, 2.0)

Features

  • simd (default): Enable SIMD optimizations via the wide crate
  • cli: Build the command-line tool (adds clap, image, serde_json dependencies)

Performance

Benchmark 512×512 image
Full butteraugli comparison ~87ms
Malta filter (HF 9-sample) ~2.6ms
Malta filter (LF 5-sample) ~2.4ms

The implementation uses 100% safe Rust with SIMD vectorization via the wide crate.

Accuracy

C++ Parity Summary:

Test Type Difference
sRGB→linear conversion 0% (exact)
Gamma function 0% (exact)
Frequency bands (all widths) <0.01%
Real images (tank test) ~1.2%
Uniform gray patterns <0.1%
Gradient patterns ~0.3%
Checkerboard patterns <0.1%
Brightness/contrast distortion <2%
Edge + blur patterns ~1-3%
Random + blur patterns ~20-22%*

Reference Parity Tests: 185 passed, 6 failed (20% tolerance)

* Six specific test cases involving blur distortions show ~20-32% divergence: edge patterns with dimensions 23x31 and 47x33, and random mid-range patterns with blur at various sizes. These appear to be related to how the blur distortion interacts with edge-detection patterns and don't affect typical real-world image comparisons.

The implementation is validated against live C++ libjxl butteraugli via FFI bindings during development. For practical image quality assessment, the Rust implementation produces results that closely match C++.

Comparison with Other Crates

Crate Type Notes
butteraugli Pure Rust Full implementation, no C++ dependency
butteraugli FFI wrapper Wraps C++ butteraugli library
butteraugli-sys FFI bindings Low-level C++ bindings

API Comparison with C++ libjxl

Feature C++ butteraugli butteraugli
Input format Linear RGB float sRGB u8 or linear RGB f32
Bit depth Any (via float) 8-bit u8 or f32
Color space Linear RGB only sRGB (auto-converted) or linear RGB
HDR support Yes Yes (via butteraugli_linear)
Channel layout Planar (separate R, G, B arrays) Interleaved RGB via imgref
Stride support Manual Built-in via ImgRef::new_stride()

XYB Color Space Note

Butteraugli's internal XYB is NOT the same as jpegli's XYB.

Aspect Butteraugli XYB jpegli XYB
Nonlinearity Gamma (FastLog2f-based) Cube root
Opsin matrix Different coefficients Different coefficients
Dynamic sensitivity Yes (blur-based adaptation) No
XY formula X = L - M, Y = L + M X = (L-M)/2, Y = (L+M)/2

This crate does NOT accept XYB input directly because there are multiple incompatible XYB definitions. Always provide RGB input and let butteraugli perform its own internal conversion.

References

Development

Running CI Locally

To reproduce the CI checks locally:

# Format check
cargo fmt --all -- --check

# Clippy lints
cargo clippy --lib --tests -- -D warnings

# Build
cargo build

# Run unit tests
cargo test --lib

# Run conformance tests
cargo test --test conformance

# Run reference parity tests
cargo test --test reference_parity

Test Coverage

# Install cargo-llvm-cov
cargo install cargo-llvm-cov

# Generate coverage report
cargo llvm-cov --lib --html

# Open report
open target/llvm-cov/html/index.html

AI-Generated Code Notice

This crate was developed with significant assistance from Claude (Anthropic). The code has been tested against the C++ libjxl butteraugli implementation and shows excellent parity for real-world images (~1-2% difference). However, not all code has been manually reviewed or human-audited.

Before using in production:

  • Review critical code paths for your use case
  • Run your own validation against expected outputs
  • Consider the test suite coverage for your specific requirements

License

BSD-3-Clause, same as the original libjxl implementation.

Commit count: 64

cargo fmt