Crates.io | caffe2op-onnxwhile |
lib.rs | caffe2op-onnxwhile |
version | 0.1.5-alpha.0 |
source | src |
created_at | 2023-03-04 08:44:16.819278 |
updated_at | 2023-03-26 03:05:56.942384 |
description | xxx |
homepage | |
repository | https://github.com/kleb6/caffe2-rs |
max_upload_size | |
id | 800481 |
size | 112,279 |
The ONNXWhileOp
is a Rust crate defining
a mathematical operator used in digital signal
processing (DSP) and machine learning
computations. This crate provides an
implementation of a loop operator, as specified in
the Open Neural Network Exchange (ONNX) standard.
Note: This crate is currently being translated from C++ to Rust, and some function bodies may still be in the process of translation.
The ONNXWhileOp
allows a graph of operators to
be iterated over multiple times, using a set of
loop-carried dependencies (LCD) tensors. These
tensors are updated in each iteration of the loop,
and passed back into the loop for the next
iteration. This creates a powerful tool for
building complex models, such as recurrent neural
networks and dynamic graphs.
The ONNXWhileOp
also provides several
convenience functions for working with LCD
tensors, including set_iteration
and
OnnxWhileOpLocalScope
. Additionally, the crate
provides a workspace
abstraction for managing
the data used by the loop, and an allow_inplace
flag for indicating when in-place updates are
allowed.
The mathematics behind the ONNXWhileOp
operator
can be expressed using standard notation for
iterative computations. Given an initial set of
LCD tensors lcd_tensor
, and a graph of operators
net
, the loop updates the LCD tensors and
executes the graph in each iteration. This can be
represented as follows:
for i in 1..iteration {
set_iteration(i)
lcd_tensor = do_run_with_type(&net, &workspace, &lcd_tensor, &allow_inplace)
}
Here, do_run_with_type
is a function that
executes the graph of operators net
on the input
tensors lcd_tensor
, using the workspace
to
manage the data, and respecting the
allow_inplace
flag. The set_iteration
function
sets the current iteration number, and is used by
other operators to determine their behavior.
Overall, the ONNXWhileOp
crate provides
a powerful tool for building iterative models in
Rust, using a standardized format that can be
easily integrated with other ONNX-compliant tools.
2> what are the use cases for running a network in a while loop?
There are several use cases where running a network in a while loop can be useful:
Recurrent Neural Networks (RNNs): RNNs are
a type of neural network that are designed to
process sequential data, such as time-series or
natural language. RNNs typically use a loop
structure to process each element of the
sequence, and the ONNXWhileOp
can be used to
implement this loop.
Conditional Computation: In some cases, it may
be necessary to run a network for a variable
number of iterations, depending on some
condition. For example, in image segmentation
tasks, the number of objects in an image may
vary, and the ONNXWhileOp
can be used to
segment each object in the image, with the
number of iterations determined by the number
of objects.
Reinforcement Learning: In reinforcement
learning, an agent interacts with an
environment and takes actions to maximize
a reward signal. The environment can be modeled
as a loop, where the agent takes actions and
receives rewards in each iteration. The
ONNXWhileOp
can be used to implement this
loop, allowing the agent to learn and adapt
over time.
Overall, the ONNXWhileOp
provides a flexible and
powerful way to implement iterative computations
in Rust, and can be used in a wide range of
applications across DSP and machine learning.
3> could you show me an example of each of these?
Sure! Here are some examples of how the
ONNXWhileOp
can be used in each of the use cases
I mentioned earlier:
One common use case for the ONNXWhileOp
is to
implement a recurrent neural network (RNN) in
Rust. RNNs are a type of neural network that are
designed to process sequential data, such as
time-series or natural language. In an RNN, the
same set of weights is applied to each element of
the sequence, with the output from one step being
fed back as input to the next step.
Here's an example of how the ONNXWhileOp
can be
used to implement a simple RNN in Rust, using the
Gluon
machine learning library:
use gluon::vm::api::{Hole, OpaqueValue, Userdata};
use gluon::{vm, Thread};
use onnxwhileop::{ONNXWhileOp, OnnxWhileOpLocalScope, run_on_device, workspace};
// Define the RNN graph
let mut net = ONNXWhileOp::new(vec![], vec![], vec![], vec![], vec![]);
net.append_op("linear", vec!["input", "weight", "bias"], vec!["output"]);
net.append_op("tanh", vec!["output"], vec!["output"]);
// Define the input and output tensors
let input = workspace()
.new_tensor("input", &[1, 1, 10])
.unwrap()
.into();
let output = workspace()
.new_tensor("output", &[1, 1, 10])
.unwrap()
.into();
// Run the RNN for 5 iterations
let iteration = 5;
for i in 1..=iteration {
let iteration_hole = Hole::new::<i64>();
let mut scope = OnnxWhileOpLocalScope::new();
scope.add("input", input.clone());
scope.add("weight", output.clone());
scope.add("bias", output.clone());
scope.add("output", output.clone());
scope.add("iteration_number", iteration_hole.clone().into());
let (ret, _, _) = run_on_device(
&mut net,
&workspace(),
&vec![],
&vec![],
&vec![],
&vec![],
&vec![],
&vec![],
&scope,
&iteration_hole,
)
.unwrap();
}
This example defines a simple RNN graph with
a single linear layer followed by a hyperbolic
tangent activation function. The ONNXWhileOp
is
used to run the graph for 5 iterations, with the
output from each iteration being fed back as input
to the next iteration.
Another use case for the ONNXWhileOp
is to
implement conditional computation, where the
number of iterations is determined by some
condition. For example, in image segmentation
tasks, the number of objects in an image may vary,
and the ONNXWhileOp
can be used to segment each
object in the image, with the number of iterations
determined by the number of objects.
Here's an example of how the ONNXWhileOp
can be
used to implement conditional computation in Rust,
using the Gluon
machine learning library:
use gluon::vm::api::{Hole, OpaqueValue, Userdata};
use gluon::{vm, Thread};
use onnxwhileop::{ONNXWhileOp, OnnxWhileOpLocalScope, run_on_device, workspace};
// Define the object segmentation graph
let mut net = ONNXWhileOp::new(vec!
4> continue
let mut net = ONNXWhileOp::new(vec![], vec![], vec![], vec![], vec![]);
net.append_op("image_segmentation", vec!["image"], vec!["mask"]);
net.append_op("count_objects", vec!["mask"], vec!["num_objects"]);
// Define the input and output tensors
let image = workspace()
.new_tensor("image", &[1, 3, 256, 256])
.unwrap()
.into();
let mask = workspace()
.new_tensor("mask", &[1, 1, 256, 256])
.unwrap()
.into();
// Run the object segmentation graph until all objects have been segmented
let mut num_objects = 0;
let mut i = 0;
while num_objects < max_objects {
let iteration_hole = Hole::new::<i64>();
let mut scope = OnnxWhileOpLocalScope::new();
scope.add("image", image.clone());
scope.add("mask", mask.clone());
scope.add("iteration_number", iteration_hole.clone().into());
let (ret, _, _) = run_on_device(
&mut net,
&workspace(),
&vec![],
&vec![],
&vec![],
&vec![],
&vec![],
&vec![],
&scope,
&iteration_hole,
)
.unwrap();
num_objects = ret[0].as_ref().unwrap().to_scalar::<f32>().unwrap() as usize;
i += 1;
}
This example defines an object segmentation graph
that takes an input image and produces a binary
mask indicating which pixels belong to which
object. The ONNXWhileOp
is used to run the graph
until a maximum number of objects have been
segmented, with the number of iterations
determined dynamically by the number of objects.
Finally, the ONNXWhileOp
can be used to
implement custom loops that are not easily
expressible using existing machine learning
operations. For example, the ONNXWhileOp
could
be used to implement a custom optimization
algorithm that requires iterating over a complex
set of equations.
Here's an example of how the ONNXWhileOp
can be
used to implement a custom loop in Rust:
use onnxwhileop::{ONNXWhileOp, OnnxWhileOpLocalScope, run_on_device, workspace};
// Define the loop graph
let mut net = ONNXWhileOp::new(vec![], vec![], vec![], vec![], vec![]);
net.append_op("update_x", vec!["x", "v"], vec!["x"]);
net.append_op("update_v", vec!["x", "v"], vec!["v"]);
// Define the input and output tensors
let x = workspace().new_tensor("x", &[1]).unwrap().into();
let v = workspace().new_tensor("v", &[1]).unwrap().into();
// Define the loop condition
let mut condition = String::from("");
condition.push_str("cond = (i < max_iter)");
// Define the loop body
let mut body = String::from("");
body.push_str("v = v + lr * grad");
body.push_str("x = x - v");
// Run the custom loop
let max_iter = 10;
let lr = 0.1;
let grad = 0.5;
let iteration_hole = Hole::new::<i64>();
let mut scope = OnnxWhileOpLocalScope::new();
scope.add("x", x.clone());
scope.add("v", v.clone());
scope.add("i", 0i64.into());
scope.add("max_iter", max_iter.into());
5> continue
let mut i = 0i64;
while run_on_device(
&mut net,
&workspace(),
&vec![],
&vec![],
&vec![],
&vec![],
&vec![],
&vec![],
&scope,
&iteration_hole,
)
.is_ok()
{
if !condition.eval(&scope).unwrap().to_scalar::<bool>().unwrap() {
break;
}
scope.add("i", (i + 1).into());
let (ret, _, _) = run_on_device(
&mut net,
&workspace(),
&vec!["grad"],
&vec![grad.clone()],
&vec![],
&vec![],
&vec![],
&vec![],
&scope,
&iteration_hole,
)
.unwrap();
i += 1;
}
In this example, the ONNXWhileOp
is used to
implement a custom optimization algorithm that
updates a variable x
according to the gradient
of a loss function. The loop has a fixed number of
iterations determined by the max_iter
parameter,
and the learning rate is controlled by the lr
parameter. The loop condition is defined by the
string cond = (i < max_iter)
, and the loop body
is defined by the string v = v + lr * grad; x = x - v
. Inside the loop, the gradient is
updated by the value of the grad
parameter, and
the iteration number is updated by adding 1 to the
previous value of i
.
Overall, the ONNXWhileOp
provides a powerful and
flexible way to implement custom loops in Rust
that can be integrated with existing machine
learning frameworks. By defining custom loop
conditions and bodies, developers can implement
a wide range of algorithms that are not easily
expressible using existing machine learning
operations.
6> what about an example of reinforcement learning?
Sure, here's an example of using the ONNXWhileOp
to implement a simple reinforcement learning
algorithm:
use onnxruntime::{environment::Environment, tensor::Tensor};
use onnxruntime::{Graph, LoggingLevel};
use rand::{distributions::Uniform, prelude::*};
use std::collections::HashMap;
fn main() {
// Create the ONNX runtime environment
let env = Environment::new(LoggingLevel::Warning).unwrap();
// Load the ONNX model defining the reinforcement learning algorithm
let mut graph = Graph::new();
graph.import("reinforcement_learning.onnx").unwrap();
// Initialize the state and reward variables
let mut state = Tensor::from(vec![0f32]);
let mut reward = Tensor::from(vec![0f32]);
// Set up the initial action distribution
let actions = vec!["move left", "move right", "stay"];
let mut action_probs = HashMap::new();
action_probs.insert("move left", 0.33);
action_probs.insert("move right", 0.33);
action_probs.insert("stay", 0.34);
// Set up the loop variables
let mut iteration = 0;
let max_iterations = 100;
// Define the loop body
let mut body = String::new();
body.push_str("state, reward, action_probs = f(state, reward, action_probs); ");
body.push_str("action = sample_action(action_probs); ");
body.push_str("state, reward = execute_action(action); ");
// Define the loop condition
let condition = "iteration < max_iterations";
// Define the loop scope
let mut scope = HashMap::new();
scope.insert("state".to_string(), state.clone());
scope.insert("reward".to_string(), reward.clone());
scope.insert("action_probs".to_string(), Tensor::from(action_probs.values().cloned().collect::<Vec<f32>>()));
scope.insert("max_iterations".to_string(), Tensor::from(max_iterations));
scope.insert("iteration".to_string(), Tensor::from(iteration));
scope.insert("f".to_string(), graph.get_function("f").unwrap());
scope.insert("sample_action".to_string(), graph.get_function("sample_action").unwrap());
scope.insert("execute_action".to_string(), graph.get_function("execute_action").unwrap());
// Run the loop
while onnx_while_op::run_while_op::<HashMap<String, Tensor>>(
&mut graph,
&env,
&mut scope,
&condition,
&body,
)
.is_ok()
{
// Update the iteration counter
iteration += 1;
// Get the updated state and reward
state = scope.get("state").unwrap().clone();
reward = scope.get("reward").unwrap().clone();
}
// Print the final state and reward
println!("Final state: {:?}", state);
println!("Final reward: {:?}", reward);
}
In this example, the ONNXWhileOp
is used to
implement a simple reinforcement learning
algorithm that learns to navigate a 1D
environment. The loop body calls an ONNX function
f
that takes the current state, reward, and
action probabilities as inputs, and returns
updated values for the state, reward, and action
probabilities. The body also samples an action
from the current action probabilities, and
executes the action to obtain a new state and
reward. The loop condition is based on a fixed
number of iterations, and the loop scope contains
the loop variables and ONNX functions used in the
loop body.
Overall, the ONNXWhileOp
provides a powerful and
flexible way to define and run loops in ONNX models, which is useful for a variety of machine learning and data processing tasks. It allows users to define complex loop bodies and conditions using ONNX functions, and provides efficient memory management and parallel execution for large-scale datasets. By leveraging the power of the ONNX format and the ONNX runtime, users can build and deploy high-performance loop-based algorithms in a variety of environments, from edge devices to cloud clusters.
Some other examples of machine learning tasks that
can be implemented using the ONNXWhileOp
include:
Gradient descent: In a typical neural network
training pipeline, the weights of the network
are updated iteratively using a gradient descent
algorithm. The ONNXWhileOp
can be used to
implement this algorithm by defining a loop body
that computes the gradients of the loss function
with respect to the weights, and updates the
weights accordingly.
Attention mechanisms: Attention mechanisms are
widely used in natural language processing and
other applications to selectively focus on
different parts of the input. The ONNXWhileOp
can be used to implement attention mechanisms by
defining a loop body that iteratively computes
attention weights based on the current input and
context, and updates the context based on the
attention weights.
Data augmentation: Data augmentation is a common
technique used in machine learning to increase
the size and diversity of training datasets. The
ONNXWhileOp
can be used to implement data
augmentation algorithms by defining a loop body
that applies a series of random transformations
to the input data, and yields the augmented data
as output.
Overall, the ONNXWhileOp
provides a powerful and
flexible way to implement complex iterative
algorithms in ONNX models, and is a valuable tool
for machine learning researchers and
practitioners.
8> could you show me an example of each of these? (gradient descent, attention mechanisms, data augmentation)?
Sure, here are some examples of how the
ONNXWhileOp
can be used to implement gradient
descent, attention mechanisms, and data
augmentation in ONNX models:
Gradient descent is a popular optimization
algorithm used in machine learning to train neural
networks. Here's an example of how the
ONNXWhileOp
can be used to implement gradient
descent:
import onnx
import numpy as np
from onnx import numpy_helper
from onnx import helper
from onnxruntime import InferenceSession, SessionOptions
# Define the inputs to the model
x = np.array([[1, 2], [3, 4]], dtype=np.float32)
y = np.array([[0], [1]], dtype=np.float32)
# Define the model graph
graph = helper.GraphProto()
graph.name = 'gradient_descent'
input_x = helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 2])
input_y = helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 1])
output_loss = helper.make_tensor_value_info('loss', onnx.TensorProto.FLOAT, [])
output_w = helper.make_tensor_value_info('w', onnx.TensorProto.FLOAT, [2, 1])
w = np.array([[0], [0]], dtype=np.float32)
init_w = helper.make_tensor('init_w', onnx.TensorProto.FLOAT, [2, 1], w.flatten())
step_size = np.array([0.1], dtype=np.float32)
init_step_size = helper.make_tensor('init_step_size', onnx.TensorProto.FLOAT, [1], step_size)
graph.initializer.extend([init_w, init_step_size])
loss_node = helper.make_node('ReduceSumSquare', ['y', 'w'], ['loss'], keepdims=0)
diff_node = helper.make_node('Sub', ['y', 'w'], ['diff'])
grad_node = helper.make_node('MatMul', ['x', 'diff'], ['grad'])
update_node = helper.make_node('Mul', ['grad', 'step_size'], ['update'])
new_w_node = helper.make_node('Add', ['w', 'update'], ['new_w'])
cond_node = helper.make_node('Less', ['loss', helper.make_tensor('', onnx.TensorProto.FLOAT, [], [0.001])], ['cond'])
body = helper.make_graph([loss_node, diff_node, grad_node, update_node, new_w_node, cond_node], 'gradient_descent_body', [input_x, input_y], [output_loss, output_w])
loop_inputs = [init_w, init_step_size]
loop_outputs = ['w', 'step_size']
loop_node = helper.make_node('Loop', ['x'], loop_outputs, body, loop_inputs)
graph.node.extend([loop_node])
graph.output.extend([helper.make_tensor_value_info('final_w', onnx.TensorProto.FLOAT, [2, 1])])
# Save the model graph to a file
onnx.save(graph, 'gradient_descent.onnx')
# Run the model with an ONNX runtime session
session_options = SessionOptions()
session_options.optimized_model_filepath = 'gradient_descent_optimized.onnx'
session = InferenceSession('gradient_descent.onnx', session_options)
input_feed = {'x': x, 'y': y}
output = session.run(None, input_feed)
final_w = numpy_helper.to_array(output[0])
print('Final weights:', final_w)
In this example, the ONNXWhileOp
is used to
implement a simple gradient descent algorithm to
find the optimal weights w
for a linear
regression problem. The algorithm iteratively
computes the gradient of the loss function with
respect to
9> continue
the weights, updates the weights by subtracting the gradient multiplied by a step size, and repeats until the loss function falls below a certain threshold.
Attention mechanisms are a key component of many
modern neural network architectures, especially
those used for natural language processing and
image classification. Here's an example of how the
ONNXWhileOp
can be used to implement an
attention mechanism:
import onnx
import numpy as np
from onnx import helper
from onnxruntime import InferenceSession, SessionOptions
# Define the inputs to the model
x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32)
h = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)
# Define the model graph
graph = helper.GraphProto()
graph.name = 'attention_mechanism'
input_x = helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [3, 3])
input_h = helper.make_tensor_value_info('h', onnx.TensorProto.FLOAT, [2, 3])
output_y = helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])
output_alpha = helper.make_tensor_value_info('alpha', onnx.TensorProto.FLOAT, [2, 3])
y0 = helper.make_node('MatMul', ['h', helper.make_tensor('', onnx.TensorProto.FLOAT, [3, 3], np.ones((3, 3)).flatten())], ['y0'])
alpha0 = helper.make_node('MatMul', ['h', helper.make_tensor('', onnx.TensorProto.FLOAT, [3, 1], np.ones((3, 1)).flatten())], ['alpha0'])
concat_input = helper.make_node('Concat', ['h', 'y0', alpha0], ['concat_input'], axis=1)
concat_output = helper.make_node('MatMul', ['concat_input', helper.make_tensor('', onnx.TensorProto.FLOAT, [7, 7], np.ones((7, 7)).flatten())], ['concat_output'])
y = helper.make_node('Slice', ['concat_output'], ['y'], starts=[0, 0], ends=[2, 3])
alpha = helper.make_node('Slice', ['concat_output'], ['alpha'], starts=[2, 0], ends=[4, 3])
cond_node = helper.make_node('Less', ['alpha', helper.make_tensor('', onnx.TensorProto.FLOAT, [], [0.9])], ['cond'])
body = helper.make_graph([y, alpha, cond_node], 'attention_mechanism_body', [input_x, input_h], [output_y, output_alpha])
loop_inputs = [helper.make_tensor('', onnx.TensorProto.FLOAT, [2, 3], np.zeros((2, 3)).flatten())]
loop_outputs = ['y', 'alpha']
loop_node = helper.make_node('Loop', ['x'], loop_outputs, body, loop_inputs)
graph.node.extend([loop_node])
graph.output.extend([output_y, output_alpha])
# Save the model graph to a file
onnx.save(graph, 'attention_mechanism.onnx')
# Run the model with an ONNX runtime session
sessionh_options = SessionOptions()
session_options.optimized_model_filepath = 'attention_mechanism_optimized.onnx'
session = InferenceSession('attention_mechanism.onnx', session_options)
input_feed = {'x': x, 'h': h}
output = session.run(None, input_feed)
y = output[0]
10> continue
Data augmentation is a technique used to increase
the amount and diversity of data available for
training a machine learning model. By applying
various transformations to the training data, such
as rotations, translations, and scaling, the model
can learn to be more robust to variations in the
input data. Here's an example of how the
ONNXWhileOp
can be used to implement data
augmentation:
import onnx
import numpy as np
from onnx import helper
from onnxruntime import InferenceSession, SessionOptions
# Define the inputs to the model
x = np.array([[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]], dtype=np.float32)
# Define the model graph
graph = helper.GraphProto()
graph.name = 'data_augmentation'
input_x = helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [1, 1, 3, 3])
output_y = helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [8, 1, 3, 3])
y0 = helper.make_node('Identity', ['x'], ['y0'])
cond_node = helper.make_node('Less', ['i', helper.make_tensor('', onnx.TensorProto.INT64, [], [8])], ['cond'])
flip_node = helper.make_node('Flip', ['y', helper.make_tensor('', onnx.TensorProto.INT64, [], [2])], ['flip_output'])
rot_node = helper.make_node('Rotate', ['y', helper.make_tensor('', onnx.TensorProto.FLOAT, [], [30])], ['rot_output'])
crop_node = helper.make_node('Crop', ['y', 'crop'], ['crop_output'])
pad_node = helper.make_node('Pad', ['y', 'pad'], ['pad_output'])
resize_node = helper.make_node('Resize', ['y', 'size'], ['resize_output'])
add_node = helper.make_node('Add', ['y', helper.make_tensor('', onnx.TensorProto.FLOAT, [1, 1, 1, 1], [1])], ['add_output'])
loop_body = helper.make_node('If', ['cond'], ['loop_body_output'], [flip_node, rot_node, crop_node, pad_node, resize_node, add_node])
loop_inputs = [helper.make_tensor('', onnx.TensorProto.INT64, [], [0])]
loop_outputs = ['y']
loop_node = helper.make_node('Loop', ['i'], loop_outputs, loop_body, loop_inputs)
output_y0 = helper.make_node('Identity', ['y'], ['output_y0'])
output_node = helper.make_node('Concat', ['output_y0', 'y'], ['y_concat'], axis=0)
graph.node.extend([y0, cond_node, loop_node, output_y0, output_node])
graph.output.extend([output_y])
# Save the model graph to a file
onnx.save(graph, 'data_augmentation.onnx')
# Run the model with an ONNX runtime session
session_options = SessionOptions()
session_options.optimized_model_filepath = 'data_augmentation_optimized.onnx'
session = InferenceSession('data_augmentation.onnx', session_options)
input_feed = {'x': x, 'i': np.array(0, dtype=np.int64), 'crop': np.array([0, 0], dtype=np.int64), 'pad': np.array([0, 0, 0, 0], dtype=np.int64), 'size': np.array([5, 5], dtype=np.int64)}
output = session.run(None, input_feed)
y = output[0]