candle-pipelines

Crates.iocandle-pipelines
lib.rscandle-pipelines
version0.0.7
created_at2025-12-27 01:44:50.049466+00
updated_at2026-01-05 00:05:45.209953+00
descriptionSimple, intuitive pipelines for local LLM inference in Rust, powered by Candle. Inspired by Python's Transformers library.
homepage
repositoryhttps://github.com/ljt019/candle-pipelines/
max_upload_size
id2006565
size511,705
Lucien Thomas (ljt019)

documentation

README

candle-pipelines

crates.io docs.rs CI

[!warning] This crate is under active development. APIs may change as features are still being added, and things tweaked.

Simple, intuitive pipelines for local LLM inference in Rust, powered by Candle. API inspired by Python's Transformers.

Available Pipelines

Note: Currently, models are accessible through these pipelines only. Direct model interface coming eventually!

Text Generation Pipeline

Generate text for various applications. Supports completions, tool calling, and token-by-token iteration.


Qwen3
Optimized for tool calling and structured output

 Parameter Sizes:
├── 0.6B
├── 1.7B
├── 4B
├── 8B
├── 14B
└── 32B

→ View on HuggingFace


Gemma3
Google's models for general language tasks

 Parameter Sizes:
├── 1B
├── 4B
├── 12B
└── 27B

→ View on HuggingFace


Llama 3.2 Meta's compact instruction-tuned models

 Parameter Sizes:
├── 1B
└── 3B

→ View on HuggingFace


OLMo-3 Allen AI's open language models with tool support

 Parameter Sizes:
├── 7B
└── 32B

→ View on HuggingFace

Analysis Pipelines

ModernBERT powers three specialized analysis tasks with shared architecture:


Fill Mask Pipeline

Complete missing words in text

 Available Sizes:
├── Base
└── Large

→ View on HuggingFace


Sentiment Analysis Pipeline

Analyze emotional tone in multiple languages

 Available Sizes:
├── Base
└── Large

→ View on HuggingFace


Zero-shot Classification Pipeline

Classify text without training examples

 Available Sizes:
├── Base
└── Large

→ View on HuggingFace


Technical Note: All ModernBERT pipelines share the same backbone architecture, loading task-specific finetuned weights as needed.

Usage

At this point in development the only way to interact with the models is through the given pipelines, I plan to eventually provide a simple interface to work with the models directly.

Inference will be quite slow at the moment, this is mostly due to not using the CUDA feature when compiling candle. I will be working on integrating this smoothly in future updates for much faster inference.

Text Generation

There are two basic ways to generate text:

  1. By providing a simple prompt string.
  2. By providing a list of messages for chat-like interactions.

Providing a single prompt

Use the run method for straightforward text generation from a single prompt string.

use candle_pipelines::error::Result;
use candle_pipelines::text_generation::{TextGenerationPipelineBuilder, Qwen3};

fn main() -> Result<()> {
    // 1. Create the pipeline
    let pipeline = TextGenerationPipelineBuilder::qwen3(Qwen3::Size0_6B)
        .temperature(0.7)
        .top_k(40)
        .build()?;

    // 2. Generate a completion - returns Output { text, stats }
    let output = pipeline.run("What is the meaning of life?")?;
    println!("{}", output.text);
    println!("Generated {} tokens", output.stats.tokens_generated);

    Ok(())
}

Providing a list of messages

For more conversational interactions, you can pass a list of messages to the run method.

The Message struct represents a single message in a chat and has a role (system, user, assistant, or tool) and content. You can create messages using:

  • Message::system(content: &str): For system prompts.
  • Message::user(content: &str): For user prompts.
  • Message::assistant(content: &str): For model responses.
  • Message::tool(content: &str): For tool/function results returned to the model.
use candle_pipelines::error::Result;
use candle_pipelines::text_generation::{TextGenerationPipelineBuilder, Qwen3, Message};

fn main() -> Result<()> {
    // 1. Create the pipeline
    let pipeline = TextGenerationPipelineBuilder::qwen3(Qwen3::Size0_6B)
        .temperature(0.7)
        .top_k(40)
        .build()?;

    // 2. Create the messages
    let messages = vec![
        Message::system("You are a helpful assistant."),
        Message::user("What is the meaning of life?"),
    ];

    // 3. Generate a completion
    let output = pipeline.run(&messages)?;
    println!("{}", output.text);

    Ok(())
}

Tool Calling

Using tools with models is also made extremely easy, you just define tools using the #[tool] macro, register them with the pipeline, and they're executed automatically when the model calls them.

use candle_pipelines::error::Result;
use candle_pipelines::text_generation::{tool, tools, ErrorStrategy};
use candle_pipelines::text_generation::{Qwen3, TextGenerationPipelineBuilder};

// 1. Define tools using the #[tool] macro
#[tool(retries = 5)]  // optional: configure retry attempts
/// Get the humidity for a given city.
fn get_humidity(city: String) -> Result<String> {
    Ok(format!("The humidity is 50% in {}.", city))
}

#[tool]  // defaults to 3 retries
/// Get the temperature for a given city in degrees celsius.
fn get_temperature(city: String) -> Result<String> {
    Ok(format!("The temperature is 20 degrees celsius in {}.", city))
}

fn main() -> Result<()> {
    // 2. Create the pipeline
    let pipeline = TextGenerationPipelineBuilder::qwen3(Qwen3::Size0_6B)
        .max_len(8192)
        .tool_error_strategy(ErrorStrategy::ReturnToModel)  // let model handle tool errors
        .build()?;

    // 3. Register tools (enabled by default)
    pipeline.register_tools(tools![get_temperature, get_humidity]);

    // 4. Get a completion - tools are used automatically
    let output = pipeline.run("What's the temp and humidity like in Tokyo?")?;
    println!("{}", output.text);

    Ok(())
}

Tools can also be asynchronous, allowing you to perform network or file I/O directly inside the handler:

use candle_pipelines::error::Result;
use candle_pipelines::text_generation::tool;

#[tool]
/// Echoes a message after waiting for a bit.
async fn delayed_echo(message: String) -> Result<String> {
    tokio::time::sleep(std::time::Duration::from_millis(25)).await;
    Ok(message)
}

Token Iteration

Use run_iter to receive tokens as they're generated. Fully sync - no async runtime needed.

use candle_pipelines::error::Result;
use candle_pipelines::text_generation::{TextGenerationPipelineBuilder, Qwen3};
use std::io::Write;

fn main() -> Result<()> {
    // 1. Create the pipeline
    let pipeline = TextGenerationPipelineBuilder::qwen3(Qwen3::Size0_6B)
        .max_len(1024)
        .build()?;

    // 2. Iterate over tokens as they're generated
    let mut tokens = pipeline.run_iter(
        "Explain the concept of Large Language Models in simple terms.",
    )?;

    // 3. Print tokens as they arrive
    for tok in &mut tokens {
        print!("{}", tok?);
        std::io::stdout().flush().unwrap();
    }

    // 4. Get stats after iteration
    let stats = tokens.stats();
    println!("\n\nGenerated {} tokens", stats.tokens_generated);

    Ok(())
}

XML Parsing for Structured Output

Use XmlParser to parse structured outputs from models - useful for reasoning traces like <think> blocks.

use candle_pipelines::error::Result;
use candle_pipelines::text_generation::{
    Event, Qwen3, TagPart, TextGenerationPipelineBuilder, XmlTag,
};

// 1. Define which tags to parse using an enum
#[derive(Debug, Clone, PartialEq, XmlTag)]
enum Tags {
    Think,      // matches <think>
    Answer,     // matches <answer>
}

fn main() -> Result<()> {
    // 2. Build a regular pipeline
    let pipeline = TextGenerationPipelineBuilder::qwen3(Qwen3::Size0_6B)
        .max_len(1024)
        .build()?;

    // 3. Create parser from tag enum
    let parser = Tags::parser();

    // 4. Get token iterator and wrap with XML parser
    let tokens = pipeline.run_iter("Think step by step, then answer.")?;
    let events = parser.parse_iter(tokens);

    // 5. Process events using pattern matching
    for event in events {
        match event? {
            Event::Tag { tag: Tags::Think, part } => match part {
                TagPart::Opened { .. } => println!("[THINKING]"),
                TagPart::Content { text } => print!("{}", text),
                TagPart::Closed { .. } => println!("[END THINKING]"),
            },
            Event::Tag { tag: Tags::Answer, part } => match part {
                TagPart::Content { text } => print!("{}", text),
                _ => {}
            },
            Event::Content { text } => print!("{}", text),
        }
    }

    Ok(())
}

The XML parser emits events as tags are encountered, enabling real-time processing without waiting for the full response.

Fill Mask (ModernBERT)

use candle_pipelines::error::Result;
use candle_pipelines::fill_mask::{FillMaskPipelineBuilder, ModernBertSize};

fn main() -> Result<()> {
    // 1. Build the pipeline
    let pipeline = FillMaskPipelineBuilder::modernbert(ModernBertSize::Base).build()?;

    // 2. Fill the mask
    let output = pipeline.run("The capital of France is [MASK].")?;

    println!("{}: {:.2}", output.prediction.token, output.prediction.score);
    // Output: Paris: 0.98
    Ok(())
}

Sentiment Analysis (ModernBERT Finetune)

use candle_pipelines::error::Result;
use candle_pipelines::sentiment::{SentimentAnalysisPipelineBuilder, ModernBertSize};

fn main() -> Result<()> {
    // 1. Build the pipeline
    let pipeline = SentimentAnalysisPipelineBuilder::modernbert(ModernBertSize::Base).build()?;

    // 2. Analyze sentiment
    let output = pipeline.run("I love using Rust for my projects!")?;

    println!("Sentiment: {} (confidence: {:.2})", output.prediction.label, output.prediction.score);
    // Output: Sentiment: positive (confidence: 0.98)
    Ok(())
}

Zero-Shot Classification (ModernBERT NLI Finetune)

Zero-shot classification offers two methods for different use cases:

Single-Label Classification (run)

Use when you want to classify text into one of several mutually exclusive categories. Probabilities sum to 1.0.

use candle_pipelines::error::Result;
use candle_pipelines::zero_shot::{ZeroShotClassificationPipelineBuilder, ModernBertSize};

fn main() -> Result<()> {
    // 1. Build the pipeline
    let pipeline = ZeroShotClassificationPipelineBuilder::modernbert(ModernBertSize::Base).build()?;

    // 2. Single-label classification
    let text = "The Federal Reserve raised interest rates.";
    let labels = &["economics", "politics", "technology", "sports"];
    let output = pipeline.run(text, labels)?;

    println!("Text: {}", text);
    for p in &output.predictions {
        println!("- {}: {:.4}", p.label, p.score);
    }
    // Example output (probabilities sum to 1.0):
    // - economics: 0.8721
    // - politics: 0.1134
    // - technology: 0.0098
    // - sports: 0.0047
    
    Ok(())
}

Multi-Label Classification (run_multi_label)

Use when labels can be independent and multiple labels could apply to the same text. Returns raw entailment probabilities.

use candle_pipelines::error::Result;
use candle_pipelines::zero_shot::{ZeroShotClassificationPipelineBuilder, ModernBertSize};

fn main() -> Result<()> {
    // 1. Build the pipeline
    let pipeline = ZeroShotClassificationPipelineBuilder::modernbert(ModernBertSize::Base).build()?;

    // 2. Multi-label classification
    let text = "I love reading books about machine learning and artificial intelligence.";
    let labels = &["technology", "education", "reading", "science"];
    let output = pipeline.run_multi_label(text, labels)?;

    println!("Text: {}", text);
    for p in &output.predictions {
        println!("- {}: {:.4}", p.label, p.score);
    }
    // Example output (independent probabilities):
    // - technology: 0.9234
    // - education: 0.8456
    // - reading: 0.9567
    // - science: 0.7821
    
    Ok(())
}

Future Plans

  • Add more model families and sizes
  • Support additional pipelines (summarization, classification)
Commit count: 0

cargo fmt