Crates.io | cardinality-estimator |
lib.rs | cardinality-estimator |
version | 1.0.2 |
source | src |
created_at | 2024-05-03 00:35:16.924072 |
updated_at | 2024-05-21 22:52:12.305517 |
description | A crate for estimating the cardinality of distinct elements in a stream or dataset. |
homepage | |
repository | https://github.com/cloudflare/cardinality-estimator |
max_upload_size | |
id | 1228261 |
size | 610,206 |
cardinality-estimator
is a Rust crate designed to estimate the number of distinct elements in a stream or dataset in an efficient manner.
This library uses HyperLogLog++ with an optimized low memory footprint and high accuracy approach, suitable for large-scale data analysis tasks.
We're using cardinality-estimator
for large-scale machine learning, computing cardinality features across multiple dimensions of the request.
Our cardinality-estimator
is highly efficient in terms of memory usage, latency, and accuracy.
This is achieved by leveraging a combination of unique data structure design, efficient algorithms, and HyperLogLog++ for high cardinality ranges.
To use cardinality-estimator
, add it to your Cargo.toml
under [dependencies]
:
[dependencies]
cardinality-estimator = "1.0.0"
Then, import cardinality-estimator
in your Rust program:
use cardinality_estimator::CardinalityEstimator;
let mut estimator = CardinalityEstimator::<12, 6>::new();
estimator.insert("test");
let estimate = estimator.estimate();
println!("estimate = {}", estimate);
Please refer to our examples and benchmarks in the repository for more complex scenarios.
The cardinality-estimator
achieves low memory footprint by leveraging an efficient data storage format.
The data is stored in three different representations - Small
, Array
, and HyperLogLog
- depending on the cardinality range.
For instance, for a cardinality of 0 to 2, only 8 bytes of stack memory and 0 bytes of heap memory are used.
The crate offers low latency by using auto-vectorization for slice operations via compiler hints to use SIMD instructions. The number of zero registers and registers' harmonic sum are stored and updated dynamically as more data is inserted, resulting in fast estimate operations.
The cardinality-estimator achieves high accuracy by using precise counting for small cardinality ranges and HyperLogLog++ with LogLog-Beta bias correction for larger ranges. This provides expected error rates as low as 0.02% for large cardinalities.
To run benchmarks you first need to install cargo-criterion
binary:
cargo install cargo-criterion
Then benchmarks with output format JSON to save results for further analysis:
make bench
We've benchmarked cardinality-estimator against several other crates in the ecosystem:
Please note, that hyperloglog and probabilistic-collections crates have bug in calculation of precision p
based on provided probability
:
p = (1.04 / error_probability).powi(2).ln().ceil() as usize;
p = (1.04 / error_probability).powi(2).log2().ceil() as usize;
We're continuously working to make cardinality-estimator
the fastest, lightest, and most accurate tool for cardinality estimation in Rust.
Benchmarks presented below are executed on Linux laptop with 13th Gen Intel(R) Core(TM) i7-13800H
processor and compiler flags set to RUSTFLAGS=-C target-cpu=native
.
Table below compares memory usage of different cardinality estimators.
The number in each cell represents stack memory bytes / heap memory bytes / heap memory blocks
at each measured cardinality.
Our cardinality-estimator
achieves the lowest stack and heap memory allocations across all different cardinalities.
Note, that hyperloglogplus
implementation has particularly high memory usage especially for cardinalities above 256.
cardinality | cardinality_estimator | amadeus_streaming | probabilistic_collections | hyperloglog | hyperloglogplus |
---|---|---|---|---|---|
0 | 8 / 0 / 0 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4464 / 2 | 160 / 0 / 0 |
1 | 8 / 0 / 0 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 36 / 1 |
2 | 8 / 0 / 0 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 36 / 1 |
4 | 8 / 16 / 1 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 92 / 2 |
8 | 8 / 48 / 2 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 188 / 3 |
16 | 8 / 112 / 3 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 364 / 4 |
32 | 8 / 240 / 4 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 700 / 5 |
64 | 8 / 496 / 5 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 1400 / 13 |
128 | 8 / 1008 / 6 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 3261 / 23 |
256 | 8 / 4092 / 7 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 10361 / 43 |
512 | 8 / 4092 / 7 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 38295 / 83 |
1024 | 8 / 4092 / 7 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 146816 / 163 |
2048 | 8 / 4092 / 7 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 207711 / 194 |
4096 | 8 / 4092 / 7 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 207711 / 194 |
8192 | 8 / 4092 / 7 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 207711 / 194 |
16384 | 8 / 4092 / 7 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 207711 / 194 |
32768 | 8 / 4092 / 7 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 207711 / 194 |
65536 | 8 / 4092 / 7 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 207711 / 194 |
131072 | 8 / 4092 / 7 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 207711 / 194 |
262144 | 8 / 4092 / 7 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 207711 / 194 |
524288 | 8 / 4092 / 7 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 207711 / 194 |
1048576 | 8 / 4092 / 7 | 48 / 4096 / 1 | 128 / 4096 / 1 | 120 / 4096 / 1 | 160 / 207711 / 194 |
Table below represents insert time in nanoseconds per element.
Our cardinality-estimator
demonstrates the lowest insert time for most of the cardinalities.
cardinality | cardinality-estimator | amadeus-streaming | probabilistic-collections | hyperloglog | hyperloglogplus |
---|---|---|---|---|---|
0 | 0.64 | 88.12 | 70.19 | 82.69 | 17.45 |
1 | 2.42 | 91.5 | 80.2 | 131.86 | 60.65 |
2 | 2.21 | 44.3 | 45.34 | 81.48 | 34.96 |
4 | 6.9 | 25.59 | 24.85 | 54.38 | 36.22 |
8 | 7.27 | 15.62 | 17.92 | 43.54 | 35.55 |
16 | 6.99 | 12.15 | 14.44 | 37.24 | 33.4 |
32 | 7.9 | 9.6 | 12.78 | 34.23 | 32.49 |
64 | 10.14 | 8.97 | 11.86 | 32.55 | 39.04 |
128 | 15.47 | 8.52 | 11.49 | 31.76 | 48.37 |
256 | 13.42 | 8.01 | 11.24 | 31.44 | 65.58 |
512 | 9.92 | 8.1 | 11.11 | 31.34 | 100.25 |
1024 | 8.32 | 8.14 | 12.52 | 31.73 | 171.71 |
2048 | 7.31 | 7.92 | 12.52 | 32.03 | 120.71 |
4096 | 7.11 | 8.01 | 11.04 | 32.73 | 63.5 |
8192 | 8.81 | 8.02 | 10.97 | 33.08 | 37.36 |
16384 | 8.08 | 8.01 | 11.03 | 32.75 | 22.24 |
32768 | 6.55 | 7.96 | 11.01 | 32.37 | 13.3 |
65536 | 5.35 | 7.96 | 10.96 | 31.95 | 8.41 |
131072 | 4.48 | 7.9 | 10.97 | 31.71 | 5.71 |
262144 | 3.91 | 7.95 | 10.95 | 31.52 | 4.26 |
524288 | 3.58 | 7.64 | 10.95 | 31.47 | 3.47 |
1048576 | 3.35 | 7.95 | 10.95 | 31.47 | 3.04 |
Table below represents estimate time in nanoseconds per call.
Our cardinality-estimator
shows the lowest estimate time for most of the cardinalities, especially smaller cardinalities up to 128.
Note, that amadeus-streaming
implementation is also quite effective at estimate operation, however it has higher memory usage as indicated by table above.
Implementations probabilistic-collections
, hyperloglogplus
and hyperloglogplus
have much higher estimate time, especially for higher cardinalities.
cardinality | cardinality-estimator | amadeus-streaming | probabilistic-collections | hyperloglog | hyperloglogplus |
---|---|---|---|---|---|
0 | 0.18 | 7.9 | 15576.4 | 125.03 | 24.89 |
1 | 0.18 | 9.19 | 15619.8 | 134.3 | 64.62 |
2 | 0.18 | 9.18 | 15615.5 | 134.4 | 70.51 |
4 | 0.18 | 9.2 | 15642.7 | 134.01 | 89.16 |
8 | 0.18 | 9.19 | 15611.1 | 134.41 | 132.0 |
16 | 0.18 | 9.19 | 15621.6 | 134.39 | 211.4 |
32 | 0.18 | 9.19 | 15637.1 | 130.58 | 357.55 |
64 | 0.18 | 9.19 | 15626 | 130.26 | 619.95 |
128 | 0.18 | 9.18 | 15640.8 | 130.33 | 1134.12 |
256 | 11.31 | 9.09 | 15668 | 133.5 | 2205.7 |
512 | 11.3 | 9.09 | 15652 | 129.58 | 4334.05 |
1024 | 11.31 | 9.09 | 15687.1 | 129.79 | 8392.59 |
2048 | 11.28 | 9.11 | 15680.4 | 129.8 | 8.08 |
4096 | 11.29 | 38.63 | 15803.4 | 129.49 | 4342.07 |
8192 | 11.28 | 38.98 | 23285 | 129.51 | 4345.7 |
16384 | 11.29 | 38.17 | 26950.7 | 132.96 | 4341.9 |
32768 | 6.02 | 10.86 | 31168 | 7674.3 | 4334.98 |
65536 | 6.05 | 4.1 | 33123.8 | 40986.4 | 4327.48 |
131072 | 6.02 | 4.1 | 33772.4 | 42113.7 | 4327.29 |
262144 | 6.02 | 4.11 | 34711.7 | 43587 | 4329.63 |
524288 | 6.02 | 4.1 | 36091.2 | 43582.8 | 4327.8 |
1048576 | 6.02 | 4.11 | 37877.1 | 45055.3 | 4327.37 |
Table below represents average absolute relative error across 100 runs of estimator on random elements at given cardinality.
Our cardinality-estimator
performs on par well with amadeus-streaming
and hyperloglog
estimators, but has especially smaller low error rate for cardinalities up to 128.
Note, that probabilistic-collections
implementation seems to have bug in its estimation operation for cardinalities >=32768.
cardinality | cardinality_estimator | amadeus_streaming | probabilistic_collections | hyperloglog | hyperloglogplus |
---|---|---|---|---|---|
0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
4 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
8 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
16 | 0.0000 | 0.0019 | 0.0013 | 0.0025 | 0.0000 |
32 | 0.0000 | 0.0041 | 0.0031 | 0.0041 | 0.0000 |
64 | 0.0000 | 0.0066 | 0.0086 | 0.0078 | 0.0000 |
128 | 0.0000 | 0.0123 | 0.0116 | 0.0140 | 0.0000 |
256 | 0.0080 | 0.0097 | 0.0094 | 0.0084 | 0.0000 |
512 | 0.0088 | 0.0100 | 0.0087 | 0.0090 | 0.0000 |
1024 | 0.0080 | 0.0094 | 0.0101 | 0.0095 | 0.0000 |
2048 | 0.0092 | 0.0093 | 0.0090 | 0.0107 | 0.0100 |
4096 | 0.0099 | 0.0108 | 0.0113 | 0.0114 | 0.0103 |
8192 | 0.0096 | 0.0095 | 0.0131 | 0.0126 | 0.0109 |
16384 | 0.0116 | 0.0107 | 0.0204 | 0.0229 | 0.0117 |
32768 | 0.0125 | 0.0109 | 1.46e14 | 0.0437 | 0.0116 |
65536 | 0.0132 | 0.0133 | 2.81e14 | 0.0143 | 0.0118 |
131072 | 0.0116 | 0.0121 | 1.41e14 | 0.0128 | 0.0127 |
262144 | 0.0137 | 0.0144 | 7.04e13 | 0.0122 | 0.0116 |
524288 | 0.0138 | 0.0136 | 3.52e13 | 0.0116 | 0.0121 |
1048576 | 0.0113 | 0.0124 | 1.76e13 | 0.0141 | 0.0110 |
mean | 0.0064 | 0.0078 | 3.14e13 | 0.0101 | 0.0052 |