Crates.io | charybdis |
lib.rs | charybdis |
version | 0.7.8 |
source | src |
created_at | 2023-11-24 14:11:29.246778 |
updated_at | 2024-10-22 17:12:21.185372 |
description | High-Performance ORM for ScyllaDB |
homepage | |
repository | https://github.com/nodecosmos/charybdis |
max_upload_size | |
id | 1047031 |
size | 86,959 |
⚠️ This project is currently in an early stage of development. Feedback and contributions are welcomed!
partial_<model>!
macrofind_<model>!
macroCachingSession
as a session arg for operationsfind_<model>!
macro we can run complex queries that are generated at compile time
as &'static str
charybdis-migrate
use charybdis::macros::charybdis_model;
use charybdis::types::{Text, Timestamp, Uuid};
#[charybdis_model(
table_name = users,
partition_keys = [id],
clustering_keys = [],
global_secondary_indexes = [username],
local_secondary_indexes = [],
static_columns = []
)]
pub struct User {
pub id: Uuid,
pub username: Text,
pub email: Text,
pub created_at: Timestamp,
pub updated_at: Timestamp,
pub address: Address,
}
use charybdis::macros::charybdis_udt_model;
use charybdis::types::Text;
#[charybdis_udt_model(type_name = address)]
pub struct Address {
pub street: Text,
pub city: Text,
pub state: Option<Text>,
pub zip: Text,
pub country: Text,
}
🚨 UDT fields must be in the same order as they are in the database.
Note that in order for migration to correctly detect changes on each migration, type_name
has to
match struct name. So if we have struct ReorderData
we have to use
#[charybdis_udt_model(type_name = reorderdata)]
- without underscores.
use charybdis::macros::charybdis_view_model;
use charybdis::types::{Text, Timestamp, Uuid};
#[charybdis_view_model(
table_name=users_by_username,
base_table=users,
partition_keys=[username],
clustering_keys=[id]
)]
pub struct UsersByUsername {
pub username: Text,
pub id: Uuid,
pub email: Text,
pub created_at: Timestamp,
pub updated_at: Timestamp,
}
Resulting auto-generated migration query will be:
CREATE MATERIALIZED VIEW IF NOT EXISTS users_by_email
AS SELECT created_at, updated_at, username, email, id
FROM users
WHERE email IS NOT NULL AND id IS NOT NULL
PRIMARY KEY (email, id)
charybdis-migrate
enables automatic migration to database without need to write migrations by
hand.
It iterates over project files and generates migrations based on differences between model
definitions and database.
It supports following operations:
--drop-and-replace
flag) #[charybdis_model(
table_name = commits,
partition_keys = [object_id],
clustering_keys = [created_at, id],
global_secondary_indexes = [],
local_secondary_indexes = [],
table_options = r#"
CLUSTERING ORDER BY (created_at DESC)
AND gc_grace_seconds = 86400
"#
)]
#[derive(Serialize, Deserialize, Default)]
pub struct Commit {...}
CLUSTERING ORDER
and COMPACT STORAGE
options.Model dropping is not added. If you removed model, you need to drop table manually.
cargo install charybdis-migrate
migrate --hosts <host> --keyspace <your_keyspace> --drop-and-replace (optional)
⚠️ If you are working with existing datasets, before running migration you need to make sure
that your **model
**
definitions structure matches the database in respect to table names, column names, column types,
partition keys,
clustering keys and secondary indexes so you don't alter structure accidentally.
If structure is matched, it will not run any migrations. As mentioned above,
in case there is no model definition for table, it will not drop it. In future,
we will add modelize
command that will generate src/models
files from existing data source.
Within testing or development environment, we can trigger migrations programmatically:
use charybdis_migrate::MigrationBuilder;
let migration = MigrationBuilder::new()
.keyspace("test")
.drop_and_replace(true)
.build(&session)
.await;
migration.run().await;
If we have model:
#[charybdis_model(
table_name = users,
partition_keys = [id],
clustering_keys = [],
global_secondary_indexes = [username]
)]
resulting query will be: CREATE INDEX ON users (username);
Indexes that are scoped to the partition key
#[charybdis_model(
table_name = menus,
partition_keys = [location],
clustering_keys = [name, price, dish_type],
global_secondary_indexes = [],
local_secondary_indexes = [dish_type]
)]
resulting query will be: CREATE INDEX ON menus((location), dish_type);
For each operation you need to bring respective trait into scope. They are defined
in charybdis::operations
module.
use charybdis::{CachingSession, Insert};
#[tokio::main]
async fn main() {
let session: &CachingSession; // init sylla session
// init user
let user: User = User {
id,
email: "charybdis@nodecosmos.com".to_string(),
username: "charybdis".to_string(),
created_at: Utc::now(),
updated_at: Utc::now(),
address: Some(
Address {
street: "street".to_string(),
state: "state".to_string(),
zip: "zip".to_string(),
country: "country".to_string(),
city: "city".to_string(),
}
),
};
// create
user.insert().execute(&session).await;
}
let user = User {id, ..Default::default()};
let user = user.find_by_primary_key().execute(&session).await?;
let users = User {id, ..Default::default()}.find_by_partition_key().execute(&session).await;
let users = User::find_by_primary_key_value(val: User::PrimaryKey).execute(&session).await;
use scylla::CachingSession;
use charybdis::errors::CharybdisError;
use charybdis::macros::charybdis_model;
use charybdis::stream::CharybdisModelStream;
use charybdis::types::{Date, Text, Uuid};
#[charybdis_model(
table_name = posts,
partition_keys = [date],
clustering_keys = [category_id, title],
global_secondary_indexes = [category_id],
local_secondary_indexes = [title]
)]
pub struct Post {
pub date: Date,
pub category_id: Uuid,
pub title: Text,
}
impl Post {
async fn find_various(db_session: &CachingSession) -> Result<(), CharybdisError> {
let date = Date::default();
let category_id = Uuid::new_v4();
let title = Text::default();
let posts: CharybdisModelStream<Post> = Post::find_by_date(date).execute(db_session).await?;
let posts: CharybdisModelStream<Post> = Post::find_by_date_and_category_id(date, category_id).execute(db_session).await?;
let posts: Post = Post::find_by_date_and_category_id_and_title(date, category_id, title.clone()).execute(db_session).await?;
let post: Post = Post::find_first_by_date(date).execute(db_session).await?;
let post: Post = Post::find_first_by_date_and_category_id(date, category_id).execute(db_session).await?;
let post: Option<Post> = Post::maybe_find_first_by_date(date).execute(db_session).await?;
let post: Option<Post> = Post::maybe_find_first_by_date_and_category_id(date, category_id).execute(db_session).await?;
let post: Option<Post> = Post::maybe_find_first_by_date_and_category_id_and_title(date, category_id, title.clone()).execute(db_session).await?;
// find by local secondary index
let posts: CharybdisModelStream<Post> = Post::find_by_date_and_title(date, title.clone()).execute(db_session).await?;
let post: Post = Post::find_first_by_date_and_title(date, title.clone()).execute(db_session).await?;
let post: Option<Post> = Post::maybe_find_first_by_date_and_title(date, title.clone()).execute(db_session).await?;
// find by global secondary index
let posts: CharybdisModelStream<Post> = Post::find_by_category_id(category_id).execute(db_session).await?;
let post: Post = Post::find_first_by_category_id(category_id).execute(db_session).await?;
let post: Option<Post> = Post::maybe_find_first_by_category_id(category_id).execute(db_session).await?;
Ok(())
}
}
Lets use our Post
model as an example:
#[charybdis_model(
table_name = posts,
partition_keys = [category_id],
clustering_keys = [date, title],
global_secondary_indexes = []
)]
pub struct Post {...}
We get automatically generated find_post!
macro that follows convention find_<struct_name>!
.
It can be used to create custom queries.
Following will return stream of Post
models, and query will be constructed at compile time
as &'static str
.
// automatically generated macro rule
let posts = find_post!("category_id in ? AND date > ?", (categor_vec, date))
.execute(session)
.await?;
We can also use find_first_post!
macro to get single result:
let post = find_first_post!("category_id in ? AND date > ? LIMIT 1", (date, categor_vec))
.execute(session)
.await?;
If we just need the Query
and not the result, we can use find_post_query!
macro:
let query = find_post_query!("date = ? AND category_id in ?", (date, categor_vec));
let user = User::from_json(json);
user.username = "scylla".to_string();
user.email = "some@email.com";
user.update().execute(&session).await;
User
model as an example:
#[charybdis_model(
table_name = users,
partition_keys = [id],
clustering_keys = [],
)]
pub struct User {
id: Uuid,
tags: Set<Text>,
post_ids: List<Uuid>,
}
push_to_<field_name>
and pull_from_<field_name>
methods are generated for each collection
field.
let user: User;
user.push_tags(vec![tag]).execute(&session).await;
user.pull_tags(vec![tag]).execute(&session).await;
user.push_post_ids(vec![tag]).execute(&session).await;
user.pull_post_ids(vec![tag]).execute(&session).await;
#[charybdis_model(
table_name = post_counters,
partition_keys = [id],
clustering_keys = [],
)]
pub struct PostCounter {
id: Uuid,
likes: Counter,
comments: Counter,
}
increment_<field_name>
and decrement_<field_name>
methods to update counter
fields.
let post_counter: PostCounter;
post_counter.increment_likes(1).execute(&session).await;
post_counter.decrement_likes(1).execute(&session).await;
post_counter.increment_comments(1).execute(&session).await;
post_counter.decrement_comments(1).execute(&session).await;
let user = User::from_json(json);
user.delete().execute(&session).await;
Lets use our Post
model as an example:
#[charybdis_model(
table_name = posts,
partition_keys = [date],
clustering_keys = [categogry_id, title],
global_secondary_indexes = [])
]
pub struct Post {
date: Date,
category_id: Uuid,
title: Text,
id: Uuid,
...
}
We have macro generated functions for up to 3 fields from primary key.
Post::delete_by_date(date: Date).execute(&session).await?;
Post::delete_by_date_and_category_id(date: Date, category_id: Uuid).execute(&session).await?;
Post::delete_by_date_and_category_id_and_title(date: Date, category_id: Uuid, title: Text).execute(&session).await?;
We can use delete_post!
macro to create custom delete queries.
delete_post!("date = ? AND category_id in ?", (date, category_vec)).execute(&session).await?
Every operation returns CharybdisQuery
that can be configured before execution with method
chaining.
let user: User = User::find_by_id(id)
.consistency(Consistency::One)
.timeout(Some(Duration::from_secs(5)))
.execute(&app.session)
.await?;
let result: QueryResult = user.update().consistency(Consistency::One).execute(&session).await?;
Supported configuration options:
consistency
serial_consistency
timestamp
timeout
page_size
timestamp
CharybdisModelBatch
operations are used to perform multiple operations in a single batch.
let users: Vec<User>;
let batch = User::batch();
// inserts
batch.append_inserts(users);
// or updates
batch.append_updates(users);
// or deletes
batch.append_deletes(users);
batch.execute(&session).await?;
Chunked batch operations are used to operate on large amount of data in chunks.
let users: Vec<User>;
let chunk_size = 100;
User::batch().chunked_inserts(&session, users, chunk_size).await?;
User::batch().chunked_updates(&session, users, chunk_size).await?;
User::batch().chunked_deletes(&session, users, chunk_size).await?;
Batch operations can be configured before execution with method chaining.
let batch = User::batch()
.consistency(Consistency::One)
.retry_policy(Some(Arc::new(DefaultRetryPolicy::new())))
.chunked_inserts(&session, users, 100)
.await?;
We could also use method chaining to append operations to batch:
let batch = User::batch()
.consistency(Consistency::One)
.retry_policy(Some(Arc::new(DefaultRetryPolicy::new())))
.append_update(&user_1)
.append_update(&user_2)
.execute(data.db_session())
.await?;
We can use batch statements to perform collection operations in batch:
let batch = User::batch();
let users: Vec<User>;
for user in users {
batch.append_statement(User::PUSH_TAGS_QUERY, (vec![tag], user.id));
}
batch.execute(&session).await;
Use auto generated partial_<model>!
macro to run operations on subset of the model fields.
This macro generates a new struct with same structure as the original model, but only with
provided fields.
Macro is automatically generated by #[charybdis_model]
.
It follows convention partial_<struct_name>!
.
// auto-generated macro - available in crate::models::user
partial_user!(UpdateUsernameUser, id, username);
Now we have new struct UpdateUsernameUser
that is equivalent to User
model, but only with id
and username
fields.
let mut update_user_username = UpdateUsernameUser {
id,
username: "updated_username".to_string(),
};
update_user_username.update().execute(&session).await?;
partial_<model>
requires #[derive(Default)]
on native modelpartial_<model>
require complete primary key in definition#charybdis_model
macro will be automatically added to
partial model.partial_<model>
struct implements same field attributes as native model,
so if we have #[serde(rename = "rootId")]
on native model field, it will be present on
partial model field.partial_<model>
should be defined in same file as native model, so it can reuse imports
required by native modelIn case we need to run operations on native model, we can use as_native
method:
let native_user: User = update_user_username.as_native().find_by_primary_key().execute(&session).await?;
// action that requires native model
authorize_user(&native_user);
as_native
works by returning new instance of native model with fields from partial model.
For other fields it uses default values.
Recommended naming convention is Purpose
+ Original Struct Name
.
E.g: UpdateAdresssUser
, UpdateDescriptionPost
.
Callbacks are convenient way to run additional logic on model before or after certain operations. E.g.
before_insert
to set default values and/or validate model before insert.after_update
to update other data sources, e.g. elastic search.pub struct AppExtensions {
pub elastic_client: ElasticClient,
}
#[charybdis_model(...)]
pub struct Post {}
impl ExtCallbacks for Post {
type Extention = AppExtensions;
type Error = AppError; // From<CharybdisError>
// use before_insert to set default values
async fn before_insert(
&mut self,
_session: &CachingSession,
extension: &AppExtensions,
) -> Result<(), CustomError> {
self.id = Uuid::new_v4();
self.created_at = Utc::now();
Ok(())
}
// use before_update to set updated_at
async fn before_update(
&mut self,
_session: &CachingSession,
extension: &AppExtensions,
) -> Result<(), CustomError> {
self.updated_at = Utc::now();
Ok(())
}
// use after_update to update elastic document
async fn after_update(
&mut self,
_session: &CachingSession,
extension: &AppExtensions,
) -> Result<(), CustomError> {
extension.elastic_client.update(...).await?;
Ok(())
}
// use after_delete to delete elastic document
async fn after_delete(
&mut self,
_session: &CachingSession,
extension: &AppExtensions,
) -> Result<(), CustomError> {
extension.elastic_client.delete(...).await?;
Ok(())
}
}
before_insert
before_update
before_delete
after_insert
after_update
after_delete
<operation>_cb
.
method: insert_cb
, update_cb
, delete_cb
according traits.
This enables us to have clear distinction between insert
and insert with
callbacks (insert_cb
).
Just as on main operation, we can configure callback operation query before execution.
use charybdis::operations::{DeleteWithCallbacks, InsertWithCallbacks, UpdateWithCallbacks};
post.insert_cb(app_extensions).execute(&session).await;
post.update_cb(app_extensions).execute(&session).await;
post.delete_cb(app_extensions).consistency(Consistency::All).execute(&session).await;
For each collection field, we get following:
PUSH_<field_name>_QUERY
static strPUSH_<field_name>_IF_EXISTS_QUERY
static str'PULL_<field_name>_QUERY
static strPULL_<field_name>_IF_EXISTS_QUERY
static strpush_<field_name>
methodpush_<field_name>_if_exists
methodpull_<field_name>
methodpull_<field_name>_if_exists
method#[charybdis_model(
table_name = users,
partition_keys = [id],
clustering_keys = []
)]
pub struct User {
id: Uuid,
tags: Set<Text>,
post_ids: List<Uuid>,
books_by_genre: Map<Text, Frozen<List<Text>>>,
}
Generated query will expect value as first bind value and primary key fields as next bind values.
impl User {
const PUSH_TAGS_QUERY: &'static str = "UPDATE users SET tags = tags + ? WHERE id = ?";
const PUSH_TAGS_IF_EXISTS_QUERY: &'static str = "UPDATE users SET tags = tags + ? WHERE id = ? IF EXISTS";
const PULL_TAGS_QUERY: &'static str = "UPDATE users SET tags = tags - ? WHERE id = ?";
const PULL_TAGS_IF_EXISTS_QUERY: &'static str = "UPDATE users SET tags = tags - ? WHERE id = ? IF EXISTS";
const PUSH_POST_IDS_QUERY: &'static str = "UPDATE users SET post_ids = post_ids + ? WHERE id = ?";
const PUSH_POST_IDS_IF_EXISTS_QUERY: &'static str = "UPDATE users SET post_ids = post_ids + ? WHERE id = ? IF EXISTS";
const PULL_POST_IDS_QUERY: &'static str = "UPDATE users SET post_ids = post_ids - ? WHERE id = ?";
const PULL_POST_IDS_IF_EXISTS_QUERY: &'static str = "UPDATE users SET post_ids = post_ids - ? WHERE id = ? IF EXISTS";
const PUSH_BOOKS_BY_GENRE_QUERY: &'static str = "UPDATE users SET books_by_genre = books_by_genre + ? WHERE id = ?";
const PUSH_BOOKS_BY_GENRE_IF_EXISTS_QUERY: &'static str = "UPDATE users SET books_by_genre = books_by_genre + ? WHERE id = ? IF EXISTS";
const PULL_BOOKS_BY_GENRE_QUERY: &'static str = "UPDATE users SET books_by_genre = books_by_genre - ? WHERE id = ?";
const PULL_BOOKS_BY_GENRE_IF_EXISTS_QUERY: &'static str = "UPDATE users SET books_by_genre = books_by_genre - ? WHERE id = ? IF EXISTS";
}
Now we could use this constant within Batch operations.
let batch = User::batch();
let users: Vec<User>;
for user in users {
batch.append_statement(User::PUSH_TAGS_QUERY, (vec![tag], user.id));
}
batch.execute(&session).await;
push_to_<field_name>
and pull_from_<field_name>
methods are generated for each collection
field.
let user: User::new();
user.push_tags(tags: HashSet<T>).execute(&session).await;
user.push_tags_if_exists(tags: HashSet<T>).execute(&session).await;
user.pull_tags(tags: HashSet<T>).execute(&session).await;
user.pull_tags_if_exists(tags: HashSet<T>).execute(&session).await;
user.push_post_ids(ids: Vec<T>).execute(&session).await;
user.push_post_ids_if_exists(ids: Vec<T>).execute(&session).await;
user.pull_post_ids(ids: Vec<T>).execute(&session).await;
user.pull_post_ids_if_exists(ids: Vec<T>).execute(&session).await;
user.push_books_by_genre(map: HashMap<K, V>).execute(&session).await;
user.push_books_by_genre_if_exists(map: HashMap<K, V>).execute(&session).await;
user.pull_books_by_genre(map: HashMap<K, V>).execute(&session).await;
user.pull_books_by_genre_if_exists(map: HashMap<K, V>).execute(&session).await;
We can ignore fields by using #[charybdis(ignore)]
attribute:
#[charybdis_model(...)]
pub struct User {
id: Uuid,
#[charybdis(ignore)]
organization: Option<Organization>,
}
So field organization
will be ignored in all operations and
default value will be used when deserializing from other data sources.
It can be used to hold data that is not persisted in database.