Crates.io | cipherstash-dynamodb-derive |
lib.rs | cipherstash-dynamodb-derive |
version | 0.8.0 |
source | src |
created_at | 2024-09-25 06:43:45.505795 |
updated_at | 2024-10-08 05:52:06.424905 |
description | Derive macros for the CipherStash client for DynamoDB |
homepage | https://cipherstash.com |
repository | |
max_upload_size | |
id | 1386055 |
size | 64,351 |
Website | GitHub | Docs | Discussions
A library for storing and searching encrypted data in DynamoDB.
To easily try out CipherStash for DynamoDB, visit the cipherstash-playground repo.
You will need to have completed the following steps before using CipherStash for DynamoDB:
To use CipherStash for DynamoDB, you must first create a CipherStash account.
The stash
CLI tool is required to create and manage datasets and keys used for encryption and decryption.
Install the CLI by following the instructions in the CLI reference doc.
To use CipherStash for DynamoDB, you must create a dataset and a client key.
ZeroKMS uses a root key to encrypt and decrypt data. This key is initialized on upload of a Dataset configuration. This step is an artifact of the SQL implementation of CipherStash. For now, it is sufficient to upload an empty configuration.
There is an empty dataset.yml
in the root of the repository, ready to be uploaded.
Upload it to ZeroKMS using the following command:
stash datasets config upload --file dataset.yml --client-id $CS_CLIENT_ID --client-key $CS_CLIENT_KEY
To use CipherStash for DynamoDB, you must first create a table in DynamoDB. The table must have a at least partition key, sort key, and term field - all of type String.
CipherStash for DynamoDB also expects a Global Secondary Index called "TermIndex" to exist if you want to search and query against records. This index should project all fields and have a key schema that is a hash on the term attribute.
You can use the the aws
CLI to create a table with an appropriate schema as follows:
aws dynamodb create-table \
--table-name users \
--attribute-definitions \
AttributeName=pk,AttributeType=S \
AttributeName=sk,AttributeType=S \
AttributeName=term,AttributeType=B \
--key-schema \
AttributeName=pk,KeyType=HASH \
AttributeName=sk,KeyType=RANGE \
--provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \
--global-secondary-indexes "IndexName=TermIndex,KeySchema=[{AttributeName=term,KeyType=HASH}],Projection={ProjectionType=ALL},ProvisionedThroughput={ReadCapacityUnits=5,WriteCapacityUnits=5}"
See below for more information on schema design for CipherStash for DynamoDB tables.
To use CipherStash for DynamoDB, you must first annotate a struct with the Encryptable
, Searchable
and
Decryptable
derive macros.
use cipherstash_dynamodb::{Searchable, Decryptable, Encryptable, Identifiable};
#[derive(Debug, Searchable, Decryptable, Encryptable, Identifiable)]
struct User {
name: String,
#[partition_key]
email: String,
}
These derive macros will generate implementations for the following traits of the same name:
Decryptable
- a trait that allows you to decrypt a record from DynamoDBEncryptable
- a trait that allows you to encrypt a record for storage in DynamoDBSearchable
- a trait that allows you to search for records in DynamoDBThe above example is the minimum required to use CipherStash for DynamoDB however you can expand capabilities via several macros.
By default, all fields on an annotated struct are stored encrypted in the table.
To store a field as a plaintext, you can use the plaintext
attribute:
use cipherstash_dynamodb::{Searchable, Decryptable, Encryptable, Identifiable};
#[derive(Debug, Searchable, Decryptable, Encryptable, Identifiable)]
struct User {
#[partition_key]
email: String,
name: String,
#[cipherstash(plaintext)]
not_sensitive: String,
}
If you don't want a field stored in the the database at all, you can annotate the field with #[cipherstash(skip)]
.
use cipherstash_dynamodb::{Searchable, Encryptable, Decryptable, Identifiable};
#[derive(Debug, Searchable, Encryptable, Decryptable, Identifiable)]
struct User {
#[partition_key]
email: String,
name: String,
#[cipherstash(skip)]
not_required: String,
}
If you implement the Decryptable
trait these skipped fields need to implement Default
.
cipherstash-dynamodb requires every record to have a sort key. By default this will be derived based on the name of the struct.
However, if you want to specify your own, you can use the sort_key_prefix
attribute:
use cipherstash_dynamodb::{Encryptable, Identifiable};
#[derive(Debug, Encryptable, Identifiable)]
#[cipherstash(sort_key_prefix = "user")]
struct User {
#[partition_key]
email: String,
name: String,
#[cipherstash(skip)]
not_required: String,
}
CipherStash for DynamoDB also supports specifying the sort key dynamically based on a field on the struct.
You can choose the field using the #[sort_key]
attribute.
use cipherstash_dynamodb::{Encryptable, Identifiable};
#[derive(Debug, Encryptable, Identifiable)]
struct User {
#[partition_key]
email: String,
#[sort_key]
name: String,
#[cipherstash(skip)]
not_required: String,
}
Sort keys will contain that value and will be prefixed by the sort key prefix.
pk
and sk
fieldsIt's common in DynamoDB to use fields on your records called pk
and sk
for your partition
and sort keys. To support this behaviour these are treated as special keywords in cipherstash-dynamodb.
If your field contains a pk
or an sk
field they must be annotated with the #[partition_key]
and #[sort_key]
attributes respectively.
use cipherstash_dynamodb::{Encryptable, Identifiable};
#[derive(Debug, Encryptable, Identifiable)]
struct User {
#[partition_key]
pk: String,
#[sort_key]
sk: String,
#[cipherstash(skip)]
not_required: String,
}
cipherstash-dynamodb supports indexing of encrypted fields for searching.
Exact, prefix and compound match types are currently supported.
To index a field, use the query
attribute:
use cipherstash_dynamodb::{Encryptable, Identifiable};
#[derive(Debug, Encryptable, Identifiable)]
struct User {
#[cipherstash(query = "exact")]
#[partition_key]
email: String,
#[cipherstash(query = "prefix")]
name: String,
}
You can also specify a compound index by using the compound
attribute.
Indexes with the same name will be combined into the one index.
Compound index names must be a combination of field names separated by a #. Fields mentioned in the compound index name that aren't correctly annotated will result in a compilation error.
use cipherstash_dynamodb::{Encryptable, Identifiable};
#[derive(Debug, Encryptable, Identifiable)]
struct User {
#[cipherstash(query = "exact", compound = "email#name")]
#[partition_key]
email: String,
#[cipherstash(query = "prefix", compound = "email#name")]
name: String,
}
It's also possible to add more than one query attribute to support querying records in multiple different ways.
use cipherstash_dynamodb::{Encryptable, Identifiable};
#[derive(Debug, Encryptable, Identifiable)]
struct User {
#[cipherstash(query = "exact")]
#[cipherstash(query = "exact", compound = "email#name")]
#[partition_key]
email: String,
#[cipherstash(query = "prefix")]
#[cipherstash(query = "exact")]
#[cipherstash(query = "prefix", compound = "email#name")]
name: String,
}
It's important to note that the more annotations that are added to a field the more index terms that will be generated. Adding too many attributes could result in a proliferation of terms and data.
The previous example for example would have the following terms generated:
This would mean a total of 53 records would be inserted.
Interacting with a table in DynamoDB is done via the [EncryptedTable] struct.
use cipherstash_dynamodb::{EncryptedTable, Key};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let config = aws_config::from_env()
.endpoint_url("http://localhost:8000")
.load()
.await;
let client = aws_sdk_dynamodb::Client::new(&config);
let table = EncryptedTable::init(client, "users").await?;
Ok(())
}
All operations on the table are async
and so you will need a runtime to execute them.
In the above example, we connect to a DynamoDB running in a local container and initialize an EncryptedTable
struct
for the "users" table.
To store a record in the table, use the [EncryptedTable::put
] method:
# use cipherstash_dynamodb::*;
#
# #[derive(Debug, Identifiable, Encryptable, Searchable, Decryptable)]
# struct User {
# #[partition_key]
# email: String,
# name: String,
# }
# impl User {
# fn new(email: impl Into<String>, name: impl Into<String>) -> Self {
# Self { email: email.into(), name: name.into() }
# }
# }
# #[tokio::main]
# async fn main() -> Result<(), Box<dyn std::error::Error>> {
# let config = aws_config::from_env()
# .endpoint_url("http://localhost:8000")
# .load()
# .await;
# let client = aws_sdk_dynamodb::Client::new(&config);
# let table = EncryptedTable::init(client, "users").await?;
let user = User::new("dan@coderdan", "Dan Draper");
table.put(user).await?;
# Ok(())
# }
To get a record, use the [EncryptedTable::get
] method:
# use cipherstash_dynamodb::*;
#
# #[derive(Debug, Identifiable, Decryptable, Encryptable)]
# struct User {
# #[partition_key]
# email: String,
# name: String,
# }
# #[tokio::main]
# async fn main() -> Result<(), Box<dyn std::error::Error>> {
# let config = aws_config::from_env()
# .endpoint_url("http://localhost:8000")
# .load()
# .await;
# let client = aws_sdk_dynamodb::Client::new(&config);
# let table = EncryptedTable::init(client, "users").await?;
let user: Option<User> = table.get("dan@coderdan.co").await?;
# Ok(())
# }
The get
method will return None
if the record does not exist.
It uses type information to decrypt the record and return it as a struct.
To delete a record, use the [EncryptedTable::delete
] method:
# use cipherstash_dynamodb::*;
#
# #[derive(Debug, Identifiable, Decryptable, Searchable, Encryptable)]
# struct User {
# #[partition_key]
# email: String,
# name: String,
# }
# #[tokio::main]
# async fn main() -> Result<(), Box<dyn std::error::Error>> {
# let config = aws_config::from_env()
# .endpoint_url("http://localhost:8000")
# .load()
# .await;
# let client = aws_sdk_dynamodb::Client::new(&config);
# let table = EncryptedTable::init(client, "users").await?;
table.delete::<User>("jane@smith.org").await?;
# Ok(())
# }
To query records, use the [EncryptedTable::query
] method which returns a builder:
# use cipherstash_dynamodb::{Searchable, Decryptable, Encryptable, EncryptedTable, Identifiable};
#
# #[derive(Debug, Decryptable, Searchable, Encryptable, Identifiable)]
# struct User {
# #[partition_key]
# email: String,
# name: String,
# }
# #[tokio::main]
# async fn main() -> Result<(), Box<dyn std::error::Error>> {
# let config = aws_config::from_env()
# .endpoint_url("http://localhost:8000")
# .load()
# .await;
# let client = aws_sdk_dynamodb::Client::new(&config);
# let table = EncryptedTable::init(client, "users").await?;
let results: Vec<User> = table
.query()
.starts_with("name", "Dan")
.send()
.await?;
# Ok(())
# }
If you have a compound index defined, CipherStash for DynamoDB will automatically use it when querying.
# use cipherstash_dynamodb::{Encryptable, Searchable, Decryptable, EncryptedTable, Key, Identifiable};
#
# #[derive(Debug, Encryptable, Searchable, Decryptable, Identifiable)]
# struct User {
# #[partition_key]
# #[cipherstash(query = "exact")]
# email: String,
# #[cipherstash(query = "prefix")]
# name: String,
# }
# #[tokio::main]
# async fn main() -> Result<(), Box<dyn std::error::Error>> {
# let config = aws_config::from_env()
# .endpoint_url("http://localhost:8000")
# .load()
# .await;
# let client = aws_sdk_dynamodb::Client::new(&config);
# let table = EncryptedTable::init(client, "users").await?;
let results: Vec<User> = table
.query()
.eq("email", "dan@coderdan")
.starts_with("name", "Dan")
.send()
.await?;
# Ok(())
# }
Note: if you don't have the correct indexes defined this query builder will return a runtime error.
CipherStash for DynamoDB uses a technique called "verticalization" which is a popular approach to storing data in DynamoDB. In practice, this means you can store multiple types in the same table.
For example, you might want to store related records to User
such as License
.
use cipherstash_dynamodb::{ Searchable, Encryptable, Decryptable, Identifiable };
#[derive(Debug, Searchable, Encryptable, Decryptable, Identifiable)]
struct License {
#[cipherstash(query = "exact")]
#[partition_key]
user_email: String,
#[cipherstash(plaintext)]
license_type: String,
#[cipherstash(query = "exact")]
license_number: String,
}
In some cases, these types might simply be a different representation of the same data based on query requirements. For example, you might want to query users by name using a prefix (say for using a "type ahead") but only return the name.
# use cipherstash_dynamodb::{Searchable, Encryptable, Decryptable, Identifiable};
#[derive(Debug, Searchable, Encryptable, Decryptable, Identifiable)]
pub struct UserView {
#[cipherstash(skip)]
#[partition_key]
email: String,
#[cipherstash(query = "prefix")]
name: String,
}
To use the view, you can first put
and then query
the value.
# use cipherstash_dynamodb::*;
# #[derive(Debug, Identifiable, Searchable, Encryptable, Decryptable)]
# pub struct UserView {
# #[cipherstash(skip)]
# #[partition_key]
# email: String,
#
# #[cipherstash(query = "prefix")]
# name: String,
# }
# impl UserView {
# fn new(email: impl Into<String>, name: impl Into<String>) -> Self {
# Self { email: email.into(), name: name.into() }
# }
# }
#
# #[tokio::main]
# async fn main() -> Result<(), Box<dyn std::error::Error>> {
# let config = aws_config::from_env()
# .endpoint_url("http://localhost:8000")
# .load()
# .await;
# let client = aws_sdk_dynamodb::Client::new(&config);
# let table = EncryptedTable::init(client, "users").await?;
let user = UserView::new("dan@coderdan", "Dan Draper");
table.put(user).await?;
let results: Vec<UserView> = table
.query()
.starts_with("name", "Dan")
.send()
.await?;
# Ok(())
# }
So long as the indexes are equivalent, you can mix and match types.
Tables created by CipherStash for DynamoDB have the following schema:
PK | SK | term | name | email ....
---------------------------------------------------------------------------
HMAC(123) | user | | Enc(name) | Enc(email)
HMAC(123) | user#email | STE("foo@example.net") |
HMAC(123) | user#name#1 | STE("Mik") |
HMAC(123) | user#name#2 | STE("Mike") |
HMAC(123) | user#name#3 | STE("Mike ") |
HMAC(123) | user#name#4 | STE("Mike R") |
PK
and SK
are the partition and sort keys respectively.
term
is a global secondary index that is used for searching.
And all other attributes are dependent on the type.
They may be encrypted or otherwise.
CipherStash for DynamoDB uses the CipherStash SDK to encrypt and decrypt data. Values are encypted using a unique key for each record using AES-GCM-SIV with 256-bit keys. Key generation is performed using the ZeroKMS key service and bulk operations are supported making even large queries quite fast.
ZeroKMS's root keys are encrypted using AWS KMS and stored in DynamoDB (separate database to the data).
When self-hosting ZeroKMS, we recommend running it in different account to your main application workloads.
Sort keys are not currently hashed (but this may change in the future)