clickhouse-arrow

Crates.ioclickhouse-arrow
lib.rsclickhouse-arrow
version0.1.6
created_at2025-07-01 01:27:05.751225+00
updated_at2025-08-24 18:39:23.318028+00
descriptionClickHouse Arrow Client for Rust
homepagehttps://github.com/georgeleepatterson/clickhouse-arrow
repositoryhttps://github.com/georgeleepatterson/clickhouse-arrow
max_upload_size
id1732631
size2,113,673
George (GeorgeLeePatterson)

documentation

https://docs.rs/clickhouse-arrow

README

🛰️ ClickHouse Native Protocol Rust Client w/ Arrow Compatibility

ClickHouse access in rust over ClickHouse's native protocol.

Currently supports revision 54479, DBMS_MIN_REVISION_WITH_VERSIONED_CLUSTER_FUNCTION_PROTOCOL, the latest revision as of June 2025.

Crates.io Documentation License: Apache 2.0 Build Status Coverage

A high-performance, async Rust client for ClickHouse with native Arrow integration. Designed to be faster and more memory-efficient than existing alternatives.

Why clickhouse-arrow?

  • 🚀 Performance: Optimized for speed with zero-copy deserialization where possible
  • 🎯 Arrow Native: First-class Apache Arrow support for efficient data interchange
  • 📊 90%+ Test Coverage: Comprehensive test suite ensuring reliability
  • 🔄 Async/Await: Modern async API built on Tokio
  • 🗜️ Compression: LZ4 and ZSTD support for efficient data transfer
  • ☁️ Cloud Ready: Full ClickHouse Cloud compatibility
  • 🛡️ Type Safe: Compile-time type checking with the #[derive(Row)] macro

Performance

Benchmarks

All benchmarks run on Apple M2 Pro (12-core) with 16GB RAM using ClickHouse 25.5.2.47 and Rust 1.89.0 with LTO optimizations.

Query Performance (500M rows)

  • clickhouse-arrow: 3.68s (19% faster than clickhouse-rs)
  • clickhouse-rs: 4.56s

Insert Performance Summary

Rows clickhouse-arrow (none) clickhouse-arrow (LZ4) clickhouse-rs (none) clickhouse-rs (LZ4)
10k 5.60ms 5.20ms 6.16ms 7.53ms
100k 41.97ms 42.12ms 47.30ms 51.66ms
200k 97.21ms 116.81ms 126.67ms 134.28ms
300k 143.06ms 160.53ms 196.39ms 183.42ms
400k 188.21ms 223.60ms 255.80ms 303.35ms

Key Performance Insights:

  • Arrow format consistently outperforms row binary format by 10-25%
  • Query performance is 19% faster with Arrow format
  • LZ4 compression shows mixed results - beneficial for smaller datasets, slight overhead for larger ones
  • Zero-Copy with arrow integration, enables zero-copy data transfer where possible
  • Throughput scales linearly with dataset size
  • Connection Pooling, using the pool feature enables connection reuse for better throughput

Running Benchmarks

# Run all benchmarks with LTO optimizations
just bench-lto

# Run specific benchmark
just bench-one insert

# View detailed results
open target/criterion/report/index.html

Benchmarks use realistic workloads with mixed data types (integers, strings, timestamps, arrays) representative of typical ClickHouse usage patterns. To benchmark with scalar data only, similar to the benchmarks in ch-go, use the scalar bench

Details

The crate supports two "modes" of operation:

ArrowFormat

Support allowing interoperability with arrow.

NativeFormat

Uses internal types and custom traits if a dependency on arrow is not required.

CreateOptions, SchemaConversions, and Schemas

Creating Tables from Arrow Schemas

clickhouse-arrow provides powerful DDL capabilities through CreateOptions, allowing you to create ClickHouse tables directly from Arrow schemas:

use clickhouse_arrow::{Client, ArrowFormat, CreateOptions};
use arrow::datatypes::{Schema, Field, DataType};

// Define your Arrow schema
let schema = Schema::new(vec![
    Field::new("id", DataType::UInt64, false),
    Field::new("name", DataType::Utf8, false),
    Field::new("status", DataType::Dictionary(Box::new(DataType::Int8), Box::new(DataType::Utf8)), false),
]);

// Configure table creation
let options = CreateOptions::new("MergeTree")
    .with_order_by(&["id".to_string()])
    .with_partition_by("toYYYYMM(created_at)")
    .with_setting("index_granularity", 8192);

// Create the table
client.create_table(None, "my_table", &schema, &options, None).await?;

Schema Conversions for Type Control

SchemaConversions (type alias for HashMap<String, Type>) provides fine-grained control over Arrow-to-ClickHouse type mappings. This is especially important for:

  1. Converting Dictionary → Enum: By default, Arrow Dictionary types map to LowCardinality(String). Use SchemaConversions to map them to Enum8 or Enum16 instead:
use clickhouse_arrow::{Type, CreateOptions};
use std::collections::HashMap;

let schema_conversions = HashMap::from([
    // Convert status column from Dictionary to Enum8
    ("status".to_string(), Type::Enum8(vec![
        ("active".to_string(), 0),
        ("inactive".to_string(), 1),
        ("pending".to_string(), 2),
    ])),
    // Convert category to Enum16 for larger enums
    ("category".to_string(), Type::Enum16(vec![
        ("electronics".to_string(), 0),
        ("clothing".to_string(), 1),
        // ... up to 65k values
    ])),
]);

let options = CreateOptions::new("MergeTree")
    .with_order_by(&["id".to_string()])
    .with_schema_conversions(schema_conversions);
  1. Geo Types: Preserve geographic types during conversion
  2. Date Types: Choose between Date and Date32
  3. Custom Type Mappings: Override any default type conversion

Field Naming Constants

When working with complex Arrow types, use these constants to ensure compatibility:

use clickhouse_arrow::arrow::types::*;

// For List types - inner field is named "item"
let list_field = Field::new("data", DataType::List(
    Arc::new(Field::new(LIST_ITEM_FIELD_NAME, DataType::Int32, true))
), true);

// For Struct/Tuple types - fields are named "field_0", "field_1", etc.
let tuple_fields = vec![
    Field::new(format!("{}{}", TUPLE_FIELD_NAME_PREFIX, 0), DataType::Int32, false),
    Field::new(format!("{}{}", TUPLE_FIELD_NAME_PREFIX, 1), DataType::Utf8, false),
];

// For Map types - uses specific field names
let map_type = DataType::Map(
    Arc::new(Field::new(MAP_FIELD_NAME, DataType::Struct(
        vec![
            Field::new(STRUCT_KEY_FIELD_NAME, DataType::Utf8, false),
            Field::new(STRUCT_VALUE_FIELD_NAME, DataType::Int32, true),
        ].into()
    ), false)),
    false
);

These constants ensure your Arrow schemas align with ClickHouse's expectations and maintain compatibility with arrow-rs conventions.

Queries

Query Settings

The clickhouse_arrow::Settings type allows configuring ClickHouse query settings. You can import it directly:

use clickhouse_arrow::Settings;
// or via prelude
use clickhouse_arrow::prelude::*;

Refer to the settings module documentation for details and examples.

Arrow Round-Trip

There are cases where a round trip may deserialize a different type by schema or array than the schema and array you used to create the table.

will try to maintain an accurate and updated list as they occur. In addition, when possible, I will provide options or other functionality to alter this behavior.

(String|Binary)View/Large(List|String|Binary) variations are normalized.

  • Behavior: ClickHouse does not make the same distinction between Utf8, Utf8View, or LargeUtf8. All of these are mapped to either Type::Binary (the default, see above) or Type::String
  • Option: None
  • Default: Unsupported
  • Impact: When deserializing from ClickHouse, manual modification will be necessary to use these data types.

Utf8 -> Binary

  • Behavior: By default, Type::String/DataType::Utf8 will be represented as Binary.
  • Option: strings_as_strings (default: false).
  • Default: Disabled (false).
  • Impact: Set to true to strip map Type::String -> DataType::Utf8. Binary tends to be more efficient to work with in high throughput scenarios

Nullable Arrays

  • Behavior: ClickHouse does not allow Nullable(Array(...)), but insertion with non-null data is allowed by default. To modify this behavior, set array_nullable_error to true.
  • Option: array_nullable_error (default: false).
  • Default: Disabled (false).
  • Impact: Enables flexible insertion but may cause schema mismatches if nulls are present.

LowCardinality(Nullable(...)) vs Nullable(LowCardinality(...))

  • Behavior: Like arrays mentioned above, ClickHouse does not allow nullable low cardinality. The default behavior is to push down the nullability.
  • Option: low_cardinality_nullable_error (default: false).
  • Default: Disabled (false).
  • Impact: Enables flexible insertion but may cause schema mismatches if nulls are present.

Enum8/Enum16 vs. LowCardinality

  • Behavior: Arrow Dictionary types map to LowCardinality, but ClickHouse Enum types may also map to Dictionary, altering the type on round-trip.
  • Option: No options available rather provide hash maps for either enum_i8 and/or enum_i16 for CreateOptions during schema creation.
  • Impact: The default behavior will ignore enums when starting from arrow.

[!NOTE] For examples of these cases, refer to the tests in the module arrow::types

[!NOTE] The configuration for the options above can be found in options

[!NOTE] For a builder of create options use during schema creation (eg Engine, Order By, Enum8 and Enum16 lookups), refer to CreateOptions

Commit count: 55

cargo fmt