| Crates.io | codeprysm-search |
| lib.rs | codeprysm-search |
| version | 0.1.0 |
| created_at | 2026-01-05 23:24:07.187877+00 |
| updated_at | 2026-01-05 23:24:07.187877+00 |
| description | Semantic code search with vector embeddings and Qdrant |
| homepage | https://github.com/codeprysm/codeprysm |
| repository | https://github.com/codeprysm/codeprysm |
| max_upload_size | |
| id | 2024778 |
| size | 501,986 |
Semantic code search with vector embeddings and Qdrant.
Part of the CodePrism project.
[dependencies]
codeprysm-search = "0.1"
# With GPU acceleration
codeprysm-search = { version = "0.1", features = ["metal"] } # macOS
codeprysm-search = { version = "0.1", features = ["cuda"] } # Linux/Windows
use codeprysm_search::{QdrantClient, SearchQuery};
// Connect to Qdrant
let client = QdrantClient::new("http://localhost:6334").await?;
// Search for code
let results = client.search(SearchQuery {
query: "authentication handler".to_string(),
limit: 10,
..Default::default()
}).await?;
for result in results {
println!("{}: {} (score: {:.2})", result.file_path, result.name, result.score);
}
GPU provides 7-9x faster inference for embedding generation:
| Device | Per-iteration | Notes |
|---|---|---|
| CPU | 170-180ms | Default |
| Metal GPU | 20-25ms | macOS Apple Silicon |
| CUDA GPU | 15-20ms | NVIDIA GPUs |
MIT License - see LICENSE