codeprysm-search

Crates.iocodeprysm-search
lib.rscodeprysm-search
version0.1.0
created_at2026-01-05 23:24:07.187877+00
updated_at2026-01-05 23:24:07.187877+00
descriptionSemantic code search with vector embeddings and Qdrant
homepagehttps://github.com/codeprysm/codeprysm
repositoryhttps://github.com/codeprysm/codeprysm
max_upload_size
id2024778
size501,986
Andrey Moor (andrey-moor)

documentation

README

codeprysm-search

Crates.io Documentation License: MIT

Semantic code search with vector embeddings and Qdrant.

Part of the CodePrism project.

Features

  • Semantic Search: Natural language queries using vector embeddings
  • Hybrid Search: Combines semantic and keyword matching with score fusion
  • GPU Acceleration: Metal (macOS) and CUDA (Linux/Windows) support
  • Qdrant Integration: Scalable vector database for production use
  • Code-Optimized Embeddings: Uses Jina embeddings tuned for code

Installation

[dependencies]
codeprysm-search = "0.1"

# With GPU acceleration
codeprysm-search = { version = "0.1", features = ["metal"] }  # macOS
codeprysm-search = { version = "0.1", features = ["cuda"] }   # Linux/Windows

Usage

use codeprysm_search::{QdrantClient, SearchQuery};

// Connect to Qdrant
let client = QdrantClient::new("http://localhost:6334").await?;

// Search for code
let results = client.search(SearchQuery {
    query: "authentication handler".to_string(),
    limit: 10,
    ..Default::default()
}).await?;

for result in results {
    println!("{}: {} (score: {:.2})", result.file_path, result.name, result.score);
}

GPU Acceleration

GPU provides 7-9x faster inference for embedding generation:

Device Per-iteration Notes
CPU 170-180ms Default
Metal GPU 20-25ms macOS Apple Silicon
CUDA GPU 15-20ms NVIDIA GPUs

License

MIT License - see LICENSE

Commit count: 12

cargo fmt