| Crates.io | colmap |
| lib.rs | colmap |
| version | 0.1.2 |
| created_at | 2025-08-26 16:42:39.481879+00 |
| updated_at | 2025-08-31 07:36:30.055027+00 |
| description | A comprehensive Rust library for COLMAP-style computer vision and 3D reconstruction |
| homepage | https://atomgit.com/amosryan/colmap |
| repository | https://atomgit.com/amosryan/colmap |
| max_upload_size | |
| id | 1811466 |
| size | 519,737 |
一个用 Rust 实现的 COLMAP(Structure-from-Motion 和 Multi-View Stereo)库,提供完整的 3D 重建管道。
在你的 Cargo.toml 中添加:
[dependencies]
colmap = "0.1.0"
库采用模块化设计,主要包含以下模块:
core - 核心数据结构和类型定义feature - 特征提取、描述符计算和匹配sfm - Structure from Motion 稀疏重建mvs - Multi-View Stereo 密集重建math - 数学工具和算法io - 数据输入输出utils - 通用工具函数use colmap::*;
// 1. 创建相机模型
let intrinsics = CameraIntrinsics::pinhole(800.0, 800.0, 320.0, 240.0);
let camera = Camera::new(1, intrinsics, (640, 480), "Camera1".to_string());
// 2. 特征提取
let pipeline = FeaturePipeline::new(PipelineConfig::default());
// let features = pipeline.extract_features(&images)?;
// 3. SfM 重建
let sfm_config = SfmConfig::default();
let mut reconstructor = IncrementalSfm::new(sfm_config);
// let sparse_reconstruction = reconstructor.reconstruct(&images, &matches)?;
// 4. MVS 密集重建
let mvs_config = MvsConfig::default();
let mvs_reconstructor = MvsReconstructor::new(mvs_config);
// let dense_reconstruction = mvs_reconstructor.reconstruct(&views)?;
println!("重建完成!");
use colmap::*;
use std::path::Path;
fn reconstruct_from_images(image_dir: &Path) -> Result<()> {
// 1. 加载图像
let images = load_images_from_directory(image_dir)?;
// 2. 特征提取和匹配
let feature_config = PipelineConfig {
detector_type: DetectorType::Sift,
max_features: 8000,
..Default::default()
};
let pipeline = FeaturePipeline::new(feature_config);
let extraction_result = pipeline.extract_and_match_all(&images)?;
println!("提取了 {} 个图像的特征", extraction_result.features.len());
println!("找到 {} 个匹配对", extraction_result.matches.len());
// 3. SfM 稀疏重建
let sfm_config = SfmConfig {
min_track_length: 2,
max_reprojection_error: 4.0,
..Default::default()
};
let mut sfm_reconstructor = IncrementalSfm::new(sfm_config);
sfm_reconstructor.set_features(extraction_result.features);
sfm_reconstructor.set_matches(extraction_result.matches);
let sparse_reconstruction = sfm_reconstructor.reconstruct()?;
println!("稀疏重建统计:");
println!(" - 注册图像: {}", sparse_reconstruction.registered_images());
println!(" - 3D 点数量: {}", sparse_reconstruction.points.len());
println!(" - 平均重投影误差: {:.2}", sparse_reconstruction.mean_reprojection_error());
// 4. MVS 密集重建
let mvs_config = MvsConfig {
min_num_views: 3,
max_image_size: 1600,
depth_range: (0.1, 100.0),
..Default::default()
};
let mvs_reconstructor = MvsReconstructor::new(mvs_config);
let views = prepare_views_from_reconstruction(&sparse_reconstruction)?;
let dense_reconstruction = mvs_reconstructor.reconstruct(&views)?;
println!("密集重建统计:");
println!(" - 点云大小: {}", dense_reconstruction.point_cloud.points.len());
println!(" - 网格三角形: {}", dense_reconstruction.mesh.triangles.len());
// 5. 保存结果
save_reconstruction(&sparse_reconstruction, "sparse_reconstruction")?;
save_point_cloud(&dense_reconstruction.point_cloud, "dense_point_cloud.ply")?;
save_mesh(&dense_reconstruction.mesh, "mesh.obj")?;
Ok(())
}
use colmap::feature::*;
// 创建 SIFT 检测器
let config = DetectorConfig::sift();
let detector = DetectorFactory::create(DetectorType::Sift, config)?;
// 检测特征点
let keypoints = detector.detect(&image)?;
println!("检测到 {} 个特征点", keypoints.len());
// 特征匹配
let config = MatcherConfig::default();
let matcher = MatcherFactory::create(MatcherType::BruteForce, config)?;
let matches = matcher.match_features(&features1, &features2)?;
use colmap::sfm::*;
// 配置 SfM 参数
let config = SfmConfig {
min_track_length: 2,
max_reprojection_error: 4.0,
..Default::default()
};
// 执行增量式重建
let mut reconstructor = IncrementalSfm::new(config);
let reconstruction = reconstructor.reconstruct()?;
use colmap::mvs::*;
// 配置 MVS 参数
let config = MvsConfig {
min_num_views: 3,
max_image_size: 1600,
depth_range: (0.1, 100.0),
..Default::default()
};
// 执行密集重建
let reconstructor = MvsReconstructor::new(config);
let result = reconstructor.reconstruct(&views)?;
let config = PipelineConfig {
detector_type: DetectorType::Sift,
max_features: 8000,
quality_threshold: 0.01,
min_distance: 1.0,
};
let config = SfmConfig {
min_track_length: 2,
max_reprojection_error: 4.0,
bundle_adjustment: BundleAdjustmentConfig {
max_iterations: 100,
convergence_threshold: 1e-6,
optimize_intrinsics: true,
optimize_distortion: false,
},
};
let config = MvsConfig {
min_num_views: 3,
max_image_size: 1600,
depth_range: (0.1, 100.0),
stereo_config: StereoMatchConfig::default(),
depth_config: DepthEstimationConfig::default(),
fusion_config: FusionConfig::default(),
};
库使用统一的错误类型 ColmapError,支持详细的错误信息:
match reconstruct_scene() {
Ok(reconstruction) => {
println!("重建成功!");
}
Err(ColmapError::FeatureExtraction(msg)) => {
eprintln!("特征提取失败: {}", msg);
}
Err(ColmapError::SfmReconstruction(msg)) => {
eprintln!("SfM 重建失败: {}", msg);
}
Err(e) => {
eprintln!("其他错误: {}", e);
}
}
运行测试套件:
cargo test
运行特定模块的测试:
cargo test feature
cargo test sfm
cargo test mvs
完整的 API 文档可以通过以下命令生成:
cargo doc --open
或访问在线文档:https://docs.rs/colmap
欢迎贡献代码!请遵循以下步骤:
git checkout -b feature/AmazingFeature)git commit -m 'Add some AmazingFeature')git push origin feature/AmazingFeature)本项目使用 MIT 许可证。详情请参阅 LICENSE 文件。
注意:这是一个实验性项目,仍在积极开发中。API 可能会发生变化。