Crates.io | concrete-core |
lib.rs | concrete-core |
version | 1.0.2 |
source | src |
created_at | 2021-03-25 16:38:24.211041 |
updated_at | 2022-11-30 08:24:30.834785 |
description | Concrete is a fully homomorphic encryption (FHE) library that implements Zama's variant of TFHE. |
homepage | https://www.zama.ai/concrete-framework |
repository | https://github.com/zama-ai/concrete-core |
max_upload_size | |
id | 373453 |
size | 6,612,412 |
This crate contains low-level implementations of homomorphic operators used in the
concrete
library (GitHub Repo).
This crate assumes that the user is comfortable with the theory behind FHE. If you prefer to use a
simpler API, that will perform sanity checks on your behalf, the higher-level concrete
crate should have your back.
Here is a small example of how one could use concrete-core
to perform a simple operation
homomorphically:
// This examples shows how to multiply a secret value by a public one homomorphically.
// First we import the proper symbols
use concrete_core::prelude::Variance;
use concrete_core::prelude::LweDimension;
use concrete_core::prelude::*;
use std::error::Error;
fn main() -> Result<(), Box<dyn Error>> {
// DISCLAIMER: the parameters used here are only for test purpose, and cannot be considered secure.
let lwe_dimension = LweDimension(750);
let noise = Variance(2_f64.powf(-104.));
// Here a hard-set encoding is applied on the input (shift by 59 bits) which corresponds here
// to a precision of 4 bits with an additional bit of padding (won't be used but required for
// PBS)
let raw_input = 3_u64 << 59;
// We will multiply by 4
let raw_input_cleatext = 4_u64;
// Unix seeder must be given a secret input.
// Here we just give it 0, which is totally unsafe.
const UNSAFE_SECRET: u128 = 0;
let mut engine = DefaultEngine::new(Box::new(UnixSeeder::new(UNSAFE_SECRET)))?;
// We create a cleartext from the raw cleartext
let cleartext: Cleartext64 = engine.create_cleartext_from(&raw_input_cleatext)?;
let key: LweSecretKey64 = engine.generate_new_lwe_secret_key(lwe_dimension)?;
// We crate the input plaintext from the raw input
let input_plaintext = engine.create_plaintext_from(&raw_input)?;
let input_ciphertext = engine.encrypt_lwe_ciphertext(&key, &input_plaintext, noise)?;
// Create a container for the output, whose content will be discarded during the operation
let mut output_ciphertext =
engine.trivially_encrypt_lwe_ciphertext(lwe_dimension.to_lwe_size(), &input_plaintext)?;
// Perform the multiplication, overwriting (discarding) the output ciphertext content
engine.discard_mul_lwe_ciphertext_cleartext(
&mut output_ciphertext,
&input_ciphertext,
&cleartext
)?;
// Get the decrypted result as a plaintext and then a raw value
let decrypted_plaintext = engine.decrypt_lwe_ciphertext(&key, &output_ciphertext)?;
let raw_decrypted_plaintext = engine.retrieve_plaintext(&decrypted_plaintext)?;
// Round the output for our 4 bits of precision
let output = raw_decrypted_plaintext >> 58;
let carry = output % 2;
let output = ((output >> 1) + carry) % (1 << 5);
// Check the high bits have the result we expect
assert_eq!(output, 12);
Ok(())
}
This software is distributed under the BSD-3-Clause-Clear license. If you have any questions,
please contact us at hello@zama.ai
.