| Crates.io | cortenforge-training |
| lib.rs | cortenforge-training |
| version | 0.6.0 |
| created_at | 2026-01-03 18:03:40.765085+00 |
| updated_at | 2026-01-14 01:03:43.833446+00 |
| description | Burn-based training and eval for LinearClassifier/MultiboxModel models in the CortenForge stack. |
| homepage | https://github.com/via-balaena/CortenForge |
| repository | https://github.com/via-balaena/CortenForge |
| max_upload_size | |
| id | 2020547 |
| size | 204,896 |
Burn-based training and evaluation for TinyDet and BigDet.
Contents
models: TinyDet (single-logit) + BigDet (multibox) configs/constructors.dataset: DatasetConfig, RunSample loader; collate pads boxes to max_boxes, emits gt_boxes, gt_mask, and global features (mean/std RGB, aspect, box count). collate_from_burn_batch does the same for warehouse batches.util: TrainArgs (model/backend/max-boxes/loss weights/input source), run_train, eval helpers, checkpoint load helpers for TinyDet/BigDet, greedy IoU matcher, backend validation.bin/train: CLI for training with --model {tiny,big} (default tiny), --max-boxes, --lambda-box, --lambda-obj, --backend {ndarray,wgpu}, --input-source {warehouse,capture-logs}.bin/eval: CLI to load a checkpoint (TinyDet/BigDet) and compute precision/recall at an IoU threshold.Models
max_boxes (default 64) and optional input_dim (defaults to box-only; training sets 4+8 for box+global features).
forward_multibox returns (boxes [B, max_boxes, 4], scores [B, max_boxes]), normalized/clamped to [0,1].Loss/matching
max_boxes and provides a mask.--lambda-box/--lambda-obj (optional IoU loss hook).Backends/features
--features backend-wgpu.--input-source capture-logs).--backend, --model, --max-boxes, --lambda-box, --lambda-obj, --input-source, --warehouse-manifest, dataset roots.Tests
Apache-2.0 (see LICENSE in the repo root).